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Resumo—The aim of this paper is to use Artificial Neural
Networks (ANNs) to solve a stochastic inverse problem related
to a model for the glottal signal used in voice generation. The
glottal signal is produced just after the air passing through the
vocal folds and the methodology to be developed here intends to
obtain it without using an invasive technique. Three parameters
of the model should be considered as random variables: the
time interval corresponding to a complete glottal cycle (the
fundamental period), the time interval corresponding to the open
phase of the vocal folds and the time interval corresponding to
the closing phase of the vocal folds. For each random variable,
the associated probability density function is constructed using
the Maximum Entropy Principle. Parameters of these probability
density functions should be identified using the ANN designed.
At first, realizations of glottal signals are generated based on
the Monte Carlo Method. Then, features are extracted from
the glottal signals obtained. The direct problem is constructed
associating the realizations of the three random variables to the
features extracted. An ANN is designed to solve the proposed
inverse problem which maps the three random variables from
the voice signals, through the features extracted, and use the
ANN to construct its solution. Features are taken as inputs for the
designed ANN, which outputs are the random variables. This is a
way to validate the Rosenberg model showing that it is possible to
fit it to experimental data identifying its parameters by measures.
This paper also highlights an interesting application of ANN.

I. INTRODUCTION

Speech technology has had an essential role in the develop-
ment of information and communication engineering that has
affected extensively all levels of our society. Understanding
the human voice production mechanism is, however, not only
extremely difficult but also highly challenging due to the fact
that humans are capable of varying extensively the functioning
of their vocal organs. A simplified manner to study the
functioning of the human speech production mechanism is to
categorize speech sounds into three main classes according
to the production mechanism: the voiced sounds, which are
excited by the fluctuation of the vocal folds; unvoiced sounds,
where the sound excitation is turbulent noise; and explosives,

which are transient-type sounds made up by abruptly releasing
the air flow that has been blocked by, for example, the lips [1].

Modelling voice production is a challenging issue, both
on the theoretical and on the application side. The voice
apparatus is complex and direct experimental measurements
are difficult to obtain particularly because they should be
invasive. Almost all the studies in voice production process
consider a source-filter model [2]. In the case of voiced
sounds, where the vowels are included, the voice source signal
(glottal signal) is produced at the glottis, and then filtered
and amplified by the vocal tract and further radiated by the
mouth. Many glottal source models have been proposed with
varying levels of complexity, such as the Rosenberg [3],
Liljencrants-Fant (LF) [4], Fujisaki-Ljungqvist (FL) [5], and
Rosenberg++ (R++) [6] models. These models were derived
from an analysis of physiological measurements. They all
share the following common features: they are bell-shaped,
positive or null, quasi-periodic, continuous, and differentiable
(except at glottal closure in some situations). Nevertheless,
they use neither the same parameters nor the same number of
parameters.

Here, the main interest is in signal models, assuming a
source-filter decomposition and plane-wave propagation, the
acoustics of voice production is reduced to an one-dimensional
signal processing. The advantage of the signal approach is
that the parameters obtained can be linked both to production
and to perception. This is the approach used in an unified set
of parameters. As compared to present physical models [7],
the main potential of signal models is their usefulness in
speech voice-quality related studies. Voice quality is mainly
due to the characteristics of vocal-fold vibratory movement.
Thus, a better understanding of these properties would help to
characterize voice quality.

As the idea of this paper is to use an ANN to solve an
inverse stochastic problem and identify parameters (or random
variables) of a glottal pulse model, the simplest model will be
chosen. The Rosenberg model will be considered to generate



the glottal signal: the model generates deterministic signals.
However, the small random fluctuation in each glottal cycle
length is called jitter and it is a way to characterize voice
signals even those with pathological characteristics. Typical
values of jitter are between 0.1% and 1% of the fundamental
period, for the so-called normal voices; that is, without pre-
sence of pathologies. The jitter value can be seen as a measure
of the irregularity of a quasi-periodic signal and it can be a
good indicator of the presence of pathologies such as vocal
fold nodules or a vocal fold polyp [8], [9]. Here, the glottal
signal to be generated will take into account the presence of
jitter. The corresponding stochastic model will be constructed.

The strategy to be applied is to construct the stochastic
model of the glottal signal, based on the Rosenberg model,
considering the three parameters which are the fundamental
period, the open interval and the closing interval as random
variables. Then, some features will be extracted of the glottal
signal, which will be explained in details later. Estimators of
the extracted features will be used as inputs of an Artificial
Neural Network whose outputs are the corresponding values of
the random variables. The Rosenberg model will be validated
being fitted to experimental data. There are other essays to
obtain the glottal pulse by a process of inverse filtering [10],
for example, but not using ANN, as proposed here. So, an inte-
resting application of Artificial Neural Network is performed,
solving a stochastic inverse problem.

II. THE ROSENBERG MODEL FOR THE GLOTTAL SIGNAL

There are many available models to generate glottal signals.
In this paper, the model used is the one known as the
Rosenberg model [3] which considers the glottal pulse, called
Ug , given by:

Ug(t) =


A
2 (1− cos (πtTp)) , 0 ≤ t ≤ Tp
Acos

(
π
2 t− TpTn

)
, Tp ≤ t ≤ Tp + Tn

0 , Tp + Tn ≤ t ≤ T0
(1)

where A is a constant related to the amplitude of the glottal
pulse, Tp and Tn are parameters related to the opening and
closing phase, respectively.

The open phase itself is divided into the opening and closing
phases which are defined by the passage of the glottal flow by
its maximum. After the return phase, the vocal folds remain
closed during the so-called closed phase. With three para-
meters, the Rosenberg trigonometric model has two separate
functions for the opening and closing phases to represent the
glottal flow volume velocity.

Fig. 1 shows an example of the glottal pulse using the
Rosenberg model.

III. STOCHASTIC MODEL OF THE GLOTTAL SIGNAL

The oscillations of the vocal folds are not exactly periodic
and the pulses of air, which compose the glottal signal,
have not exactly the same time duration. The small random
fluctuation in each glottal cycle length is called jitter and its
study is particularly important in different areas related to the
voice generation.

Figura 1. Glottal pulse Rosenberg model: glottal flow corresponding to one
complete glottal cycle.

One of the first works for quantifying the jitter was proposed
by Lieberman [11] who has characterized it by introducing
a factor representing all perturbations greater than 0.5 ms.
Other preliminary works were based on the calculations of
a typical value related to the differences between the lengths
of the cycles and their mean values or, more rarely, from the
instantaneous frequencies and their mean values. Basically,
these works agree with the fact that typical values of the
jitter are between 0.1% and 1% of the fundamental period,
for the so-called normal voices; that is, without presence of
pathologies.

The idea is to consider three main parameters of the
glottal signal in the Rosenberg model as random variables and
consequently generate jitter. The parameters to be considered
will be called the fundamental period, the opening time and
the closing time.

Let us consider the duration between two successive times,
the first one corresponding to the instant the glottis opens and
the second one the instant for which it closes completely.
This duration, denoted by Tfund, is a random variable, and
its inverse is defined as the fundamental frequency that is the
random variable Ffund = 1/Tfund.

The second random variable, associated to the opening time,
will be denoted by OT , and the third one, associated to
the closing time, CT . It is important to say that the three
parameters T0, Tp and Tn in Eq. 1 will be considered as the
random variables Tfund, OT and CT , respectively.

To construct the probability density functions (p.d.f.’s)
associated to the random variables Tfund, OT and CT ,
the Maximum Entropy Principle is used (see [14], [15]) in
the context of the Information theory introduced by [16].
This principle states: Out of all probability distributions
consistent with a given set of available information, choose
the one that has maximum uncertainty (entropy). Details
about the available information of each random variable used
to construct the probability density functions can be found in
[12].

The construction of the p.d.f.’s of the three random variables
will follow the same procedure. Let Y be each one of these
random variables, Tfund, OT and CT , whose support is
]0,+∞[. The probability density function pY (y) of the random
variable Y has to verify the constraints given by Eqs. 2, 3
and 4:



∫ +∞

−∞
pY (y) dy = 1 , (2)

∫ +∞

−∞
y pY (q) dy = Y , (3)

∫ +∞

−∞
ln(y) pY (y) dy = c . (4)

in which c is an unknown positive constant.
Applying the Maximum Entropy Principle yields the p.d.f.
given by Eq. 5:

pY (y) = 1]0,+∞[(y) 1
Y

(
1
δ2
Y

) 1

δ2
Y ×

× 1

Γ (1/δ2Y )

(
y

Y

) 1

δ2
Y

−1

exp

(
− y

δ2Y Y

)
(5)

where the positive parameter δY = σY /Y is the relative
deviation of the random variable Y such that δY < 1/

√
2

and where σY is the standard deviation of Y . From Eq. 5, it
can be proved that Y is a second-order random variable and
that E{1/Y 2} < +∞.

Clearly, there is a mapping L such that the glottal signal ug
at time t can be written as

ug(t) = L(t;TFund, OT,CT, δ) , (6)

When the random variables Tfund, OT e CT are considered
the glottal signal is then a stochastic process Ug such that

Ug(t) = L(t;Tfund, OT,CT, δ) , (7)

where δ is the dispersion parameters considered for the three
random variables.

It is assumed that this stochastic process can locally be
modelled as being stationary and ergodic (see, for instance,
[13]). For each realization of (Tfund, OT , CT , δ) a glottal
pulse is generated and a realization of the stochastic process
corresponding to the glottal signal is composed by several
glottal pulses.

IV. FEATURES EXTRACTED

After generating the glottal signal some parameters can be
extracted and they will be used to train the Artificial Neural
Network designed, which architecture will be discussed later.
The parameters of the glottal signal can provide information
to examine their importance in biomedical applications. But,
here, they can help to fit the Rosenberg model.

In this paper, the features extracted from the voice signals
are: MFCCs coefficients, measures of jitter, dH12 and HRF.
Each one of these parameters will be discussed in the fol-
lowing.

1) MFCCs (Mel Frequency Cepstrum Coeficients): The
MFCC [17] is a representation defined as the real cepstrum of
a windowed short-time signal derived from the fast Fourier
transform of the speech signal. In the MFCC, a nonlinear
frequency scale is used, which approximates the behavior of
the auditory system. The discrete cosine transform of the real
logarithm of the short-time energy spectrum expressed on this
nonlinear frequency scale is called the MFCC. Fifteen (15)
MFCCs were extracted from the glottal signals and used as
entries for the ANN designed.

2) Jitter measures: There are different types of measures
for jitter, listed below [18]:

(i) Absolute jitter. It is the cycle-to-cycle variation of the
fundamental frequency, i.e, the average absolute difference
between consecutive periods, in seconds, expressed as

Jitabs = 1N − 1

N−1∑
i−1
| Ti − Ti+1 | , (8)

in which Ti are the lengths of each glottal cycle and N is the
number of periods considered.

(ii) Local jitter. It is the average absolute difference between
consecutive periods, divided by the average period, and given
by

Jitloc = 1N − 1

N−1∑
i−1
| Ti − Ti+1 |1N

N∑
i=1

Ti . (9)

In general, the value 1.040% is considered as a threshold for
the occurrence of a pathology.

(iii) Jitter RAP. It is the relative average perturbation, the
average absolute difference between a period and the average
of it and its two neighbors, divided by the average period.
In general, 0.680% is considered as a threshold for the
occurrence of a pathology.

(iv) Jitter PPQ5. It is the five-point period perturbation
quotient, computed as the average absolute difference
between a period and the average of it and its four closest
neighbors, divided by the average period. In general, 0.840%
is considered as a threshold for pathology; as this number
was based on jitter measurements influenced by noise, the
correct threshold is probably lower.

3) Frequency domain parameters: To estimate frequency
domain parameters, the frequency or the power spectrum of
the glottal pulse is considered. Here, two frequency domains
parameters are taken into account. First is the dH12 which is
the difference of the first and second harmonics of the glottal
frequency spectrum waveform in decibel. Another similar
parameter is harmonic richness factor (HRF), which is defined
as the ratio between the sums of the amplitudes of harmonics
above the fundamental frequency and the magnitude of the
fundamental frequency of the first harmonic in decibels. Both
are defined in [18].



A. Simulations related to the direct problem

As an example, a glottal signal was generated; that is, a
realization of the stochastic process associated, taken into ac-
count some values for the mean values of the random variables
and the parameters considered. The values considered were:
Tfund = 1/200, OT = 0.25, TC = 0.35, δ = 0.3. In
this case, the jitter can be clearly noted. Figure 2 shows one
realization considering the data.

Figura 2. Simulation of a glottal signal with jitter.

For each realization, features were extracted, as discussed
before: MFCCs, measures of jitter, DH12 and HRF.

The details about the solution of the inverse problem will
be described in the next section.

V. SOLVING THE INVERSE PROBLEM USING ARTIFICIAL
NEURAL NETWORKS

The methodology applied is described in the following:
Step 1: Using the probability density functions cons-
tructed for TFund, OT and TC, glottal signals are
generated in the following manner: for each mean
value of TFund, OT and TC, and considering an
unique value for the dispersion parameter δ (the same
value is considered for the three random variables),
glottal pulses are constructed and, consequently, glot-
tal signals obtained. Each realization of a glottal
signal is composed by several glottal pulses.
Step 2: For each realization obtained in Step 1,
features are extracted: 15 MFCCs, 4 measures of
jitter, dH12 and HRF .

Step 3: Steps 1 e 2 are varied considering a grid for mean
values of TFund, OT and TC and also a grid for values of
δ. That is, let TFundi , i = 1, . . . , n, OTj , j = 1, . . . ,m,
TCk , k = 1, . . . , p be the mean values of the random
variables and let δ` ,

VI. THE ANN DESIGNED

As described on section IV, the extracted parameters from
the glottal signal are used to train the Artificial Neural
Network.

Tho approaches were chosen for the artificial neural newtork
design: The first one is based on a 27×30×4 multilayer per-
ceptron (MLP) architecture, and the second one is 4 individual
27×qi×4 MLP architecure, where qi is the number of hidden
neurons for each estimated parameter (i.e. i = 1 . . . 4) of ~u.
Both trained with the back-propagation algorithm [19] using
Levenberg - Marquardt [20], [21] as the resolution method of
optimization, both created and simulated in MATLAB.

Figura 3. Different ANN architecures were defined. a) A single 27× 30× 4
MLP ANN designed for the ~u vector estimation, and b) Four single 27×qi×1
MLP ANN for estimating the individual ~u components.

The labeled database consists on 4455 samples. About 70%
of these samples are used for training, 15% are used for
validating and the 15% remaining samples are used for testing.

Simulations results were performed with a second set of
data, where the input data was presented to the Artificial
Neural Network (after the training phase) and recording the
outputs.

A. Some results obtained

The direct problem was constructed considering the fol-
lowing variations: Tfund from 110 up to 310, with step
10; OT from 0.1 up to 0.9, with step 0.1 and TC from
0.1 up to 0.9, with step 0.1. In addition, δ from 0.001 up
to 0.009, with step 0.001. And, with these considerations
for the random variables, glottal signals were generated and
features extracted. Then, the ANN corresponding to the inverse
problem designed.

Considering some particular representative results, listed on
Table I, target is the real value of interest for a certain input,
and estimated is the ANN output for this same input.

δ` OTj TCk TFundi
target 0.100 0.700 0.001 210
Estimated 0.093 0.712 0.001 207
target 0.200 0.400 0.007 230
estimated 0.203 0.408 0.007 231
target 0.300 0.400 0.001 250
estimated 0.296 0.388 0.001 254
target 0.400 0.300 0.003 290
estimated 0.403 0.285 0.0029 301

Tabela I
ARTIFICIAL NEURAL NETWORK ESTIMATES FOR ~u OUTPUT VECTOR

For the sake of clarity, the ~w vector input was omitted from
the table.

For OT parameter estimation, a total of 30 hidden neurons
(q1 = 30) were applied. Figure 4 presents the estimated values
for the first 200 hundred show that the OT estimation was
noisy and the most difficult to train.

For TC estimation, a total of 18 hidden neurons (q1 = 18)
were applied, showing better result than the TC estimation
but still noisy, as seen in Fig. 5.



Figura 4. ANN estimation for OT parameter over the first 200 samples of
test database.

Figura 5. ANN estimation for TC parameter over the first 200 samples of
test database.

Finally, the T fund and δ estimation show us the best results
for ANN training and estimation. Both ANNs were trained
with 10 hidden neurons each. Fig. 6 and Fig. 7 show the
estimated results for the 200 first samples of the test database
with less noisy fitting.

Fewer neurons, as well as more, showed worst results for
all the estimated parameters, maybe to the fact that there are
some input parameters that must be suppressed from training.

A feature selection phase is undergoing in order to show
evidences that not all the 27 inputs parameters are necessary
to all ANN.

The maximum relative error on Table I is about 7%, relative
to δ`, with 0.100 target and 0.093 estimated value. This is
considered a small error for this type of application.

VII. CONCLUSIONS

A methodology to estimate the probability density functions
of three random variables associated to control parameters
in a non-linear model for producing voice was developed,

Figura 6. ANN estimation for T fund parameter over the first 200 samples
of test database.

Figura 7. ANN estimation for δ parameter over the first 200 samples of test
database.

through their mean values and the dispersion parameter. The
methodology consists in solving an inverse stochastic problem
using an artificial neural network, in the place of considering
the model itself.

Although the system used was non-linear and stochastic, this
paper showed that it is possible to identify some parameters
using an Artificial Neural Network. Mainly, a simply model,
like the Rosenberg model for the glottal pulse could be used
and validated.

The future idea is then to use more parameters extracted
from the voice signals in order to improve the quality of the
parameters estimation. Other glottal models will also be used.

A feature selection study over the 27 parameters is under
processing in order to check how these random variables
contributes to the glottal model, and also help to guide for
better ANN architecture and ANN models too.

Glottal pulse models better understanding is important not
only for voice synthesis, but also for the developing of
auxiliary diagnostic systems for the major pathologies through



the voice analysis over mobile phones.
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