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Anomaly Detection

In anomaly detection, the goal is to find objects that are different from most
other objects. Often, anomalous objects are known as outliers, since, on a
scatter plot of the data, they lie far away from other data points. Anomaly
detection is also known as deviation detection, because anomalous objects
have attribute values that deviate significantly from the expected or typical
attribute values, or as exception mining, because anomalies are exceptional
in some sense. In this chapter, we will mostly use the terms anomaly or outl'ier.

There are a variety of anomaly detection approaches from several areas,
including statistics, machine learning, and data mining. All try to capture the
idea that an anomalous data object is unusual or in some way inconsistent with
other objects. Although unusual objects or events are, by definition, relatively
rare, this does not mean'that ttrey do not occur frequently in absolute terms.
For example, an event that is "one in a thousand" can occur millions of times
when billions of events are considered.

In the natural world, human society, or the domain of data sets, most
events and objects are, by definition, commonplace or ordinary. However, we
have a keen awareness of the possibility of objects that are unusual or extraor-
dinary. This includes exceptionally dry or rainy seasons) famous athletes, or
an attribute value that is much smaller or larger than all others. Our inter-
est in anomalous events and objects stems from the fact that they are often
of unusual importance: A drought threatens crops, an athlete's exceptional
skill may lead to victory, and anomalous values in experimental results may
indicate either a problem with the experiment or a new phenomenon to be
investigated.

The following examples illus;trate applications for which anomalies are of
considerable interest.
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o Fbaud Detection. The purchasing behavior of someone who steals a

credit card is probably different from that of the original owner. Credit

card companies attempt to detect a theft by looking for buying patterns

that characterize theft or by noticing a change from typical behavior.

Similar approaches are used for other types of fraud.

o Intrusion Detection. Unfortunately, attacks on computer systems

and computer networks are commonplace. While some of these attacks,
such as those designed to disable or overwhelm computers and networks,
are obvious, other attacks, such as those designed to secretly gather

information, are difficult to detect. Many of these intrusions can only be

detected by monitoring systems and networks for unusual behavior.

o Ecosystem Disturbances. In the natural world, there are atypical
events that can have a significant effect on human beings. Examples
include hurricanes, floods, droughts, heat waves, and fires. The goal is

often to predict the likelihood of these events and the causes of them.

o Public Health. In many countries, hospitals and medical clinics re-
port various statistics to national organizations for further analysis. For

example, if all children in a city are vaccinated for a particular disease,
e.g., measles, then the occurrence ofa few cases scattered across various
hospitals in a city is an anomalous event that may indicate a problem

with the vaccination programs in the city.

o Medicine. For a particular patient, unusual symptoms or test results
may indicate potential health problems. However, whether a particular

test result is anomalous may depend on other characteristics of the pa-

tient, such as age and sex. Furthermore, the categorization of a result

as anomalous or not incurs a cost-unneeded additional tests if a pa-

tient is healthy and potential harm to the patient if a condition is left

undiagnosed and untreated.

Although much of the recent interest in anomaly detection has been driven

by applications in which anomalies are the focus, historically, anomaly detec-

tion (and removal) has been viewed as a technique for improving the analysis

of typical data objects. For instance, a relatively small number of outliers can

distort the mean and standard deviation of a set of values or alter the set

of clusters produced by a clustering algorithm. Therefore, anomaly detection
(and removal) is often a part of data preprocessing.
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In this chapter, we will focur; on anomaly detection. After a few preliminar-
ies, we provide a detailed discussion of some important approaches to anomaly
detection, illustrating them with examples of specific techniques.

10.1 Preliminaries

Before embarking on a discussion of specific anomaly detection algorithms, we
provide some additional background. Specifically, we (1) explore the causes of
anomalies, (2) consider various anomaly detection approaches, (3) draw dis-
tinctions among approaches based on whether they use class label information,
and (4) describe issues commorr to anomaly detection techniques.

10.1.1 Causes of Anoma.l ies

The following are some common causes of anomalies: data from different
classes, natural variation, and rlata measurement or collection errors.

Data from Different Classes An object may be different from other ob-
jects, i.e., anomalous, because it is of a different type or class. To illustrate,
someone committing credit cald fraud belongs to a different class of credit
card users than those people v'ho use credit cards legitimately. Most of the
examples presented at the beginning of the chapter, namely, fraud, intrusion,
outbreaks of disease, and abnormal test results, are examples of anomalies that
represent a different class of ob.iects. Such anomalies are often of considerable
interest and are the focus of anomaly detection in the field of data mining.

The idea that anomale6 6['jects come from a different source (class) than
most of the data objects is stal;ed in the often-quoted definition of an outlier
by the statistician Douglas Har'ikins.

Definition 10.1 (Hawkins' lDefinition of an Outlier). An outlier is an
observation that differs so much from other observations as to arouse susoicion
that it was generated by a diffe,rent mechanism.

Natural Variation Many daL,ta sets can be modeled by statistical distribu-
tions, such as a normal (Gaussian) distribution, where the probability of a
data object decreases rapidly as the distance of the object from the center
of the distribution increases. In other words, most of the objects are near a
center (average object) and the likelihood that an object differs significantly
from this average object is small. For example, an exceptionally tall person is
not anomalous in the sense of t,eing from a separate class of objects, but only
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in the sense of having an extreme value for a characteristic (height) possessed

by all the objects. Anomalies that represent extreme or unlikely variations are
often interesting.

Data Measurement and Collection Errors Errors in the data collection
or measurement process are another source of anomalies. For example, a
measurement may be recorded incorrectly because of human error) a problem

with the measuring device, or the presence of noise. The goal is to eliminate
such anomalies, since they provide no interesting information but only reduce

the quality of the data and the subsequent data analysis. Indeed, the removal

of this type of anomaly is the focus of data preprocessing, specifically data
cleaning.

Summary An anomaly may be a result of the causes given above or of
other causes that we did not consider. Indeed, the anomalies in a data set
may have several sources, and the underlying cause of any particular anomaly
is often unknown. In practice, anomaly detection techniques focus on finding
objects that differ substantially from most other objects, and the techniques
themselves are not affected by the source of an anomaly. Thus, the under-
lying cause of the anomaly is only important with respect to the intended
application.

10.1.2 Approaches to Anomaly Detection

Here, we provide a high-level description of some anomaly detection tech-
niques and their associated definitions of an anomaly. There is some overlap
between these techniques, and relationships among them are explored further
in Exercise 1 on page 680.

Model-Based Techniques Many anomaly detection techniques first build
a model of the data. Anomalies are objects that do not fit the model very well.
For example, a model of the distribution of the data can be created by using
the data to estimate the parameters of a probability distribution. An object
does not fit the model very well; i.e., it is an anomaly, if it is not very likely
under the distribution. If the model is a set of clusters, then an anomaly is an
object that does not strongly belong to any cluster. When a regression model
is used, an anomaly is an object that is relatively far from its predicted value.

Because anomalous and normal objects can be viewed as defining two dis-
tinct classes, classification techniques can be used for building models of these



10.1 Preliminaries 655

two classes. Of course, classification techniques can only be used if class labels
are available for some of the objects so that a training set can be constructed.
Also, anomalies are relatively rare, and this needs to be taken into account
when choosing both a classification technique and the measures to be used for
evaluation. (See Section 5.7.)

In some cases, it is difficult to build a model; e.g., because the statistical
distribution of the data is unknown or no training data is available. In these
situations, techniques that do not require a model, such as those described
below, can be used.

Proximity-Based rechniques It is often possible to define a proximity
measure between objects, and a number of anomaly detection approaches are
based on proximities. Anomalous objects are those that are distant from most
of the other objects. Many of the techniques in this area are based on distances
and are referred to as distance-based outlier detection techniques. When
the data can be displayed as a two- or three-dimensional scatter plot, distance-
based outliers can be detected visually, by looking for points that are separated
from most other points.

Density-Based Techniques Estimates of the density of objects are rela-
tively straightforward to compute, especially if a proximity measure between
objects is available. Objects that are in regions of low density are relatively
distant from their neighbors, and can be considered anomalous. A more so-
phisticated approach accommodates the fact that data sets can have regions
of widely differing densities, and classifies a point as an outlier only if it has a
local density significantly less than that of most of its neighbors.

10.1.3 The Use of Class Labels

There are three basic approaches to anomaly detection: unsupervised, super-
vised' and semi-supervised. The major distinction is the degree to which class
labels (anomaly or normal) are available for at least some of the data.

Supervised anomaly detection Techniques for supervised anomaly detec-
tion require the existence of a training set with both anomalous and
normal objects. (Note that there may be more than one normal or
anomalous class.) As mentioned previously, classification techniques that
address the so-called rare class problem are particularly relevant because
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anomalies are relatively rare with respect to normal objects. See Section
r n
r ) . 1  .

IJnsupervised anornaly detection In many practical situations, class Ia-

bels are not available. In such cases, the objective is to assign a score (or

a label) to each instance that reflects the degree to which the instance is

anomalous. Note that the presence of many anomalies that are similar
to each other can cause them all to be labeled normal or have a low out-
Iier score. Thus, for unsupervised anomaly detection to be successful,
anomalies must be distinct from one another, as well as normal objects.

Semi-supervised anomaly detection Sometimes training data contains la-
beled normal data, but has no information about the anomalous objects.
In the semi-supervised setting, the objective is to find an anomaly label
or score for a set of given objects by using the information from labeled
normal objects. Note that in this case, the presence of many related

outliers in the set of objects to be scored does not impact the outlier
evaluation. However, in many practical situations, it can be difficult to
find a small set of representative normal objects.

AII anomaly detection schemes described in this chapter can be used in

supervised or unsupervised mode. Supervised schemes are essentially the same
as classification schemes for rare classes discussed in Section 5.7.

LO.L.4 Issues

There are a variety of important issues that need to be addressed when dealing
with anomalies.

Number of Attributes Used to Define an Anomaly The question of

whether an object is anomalous based on a single attribute is a question of

whether the object's value for that attribute is anomalous. However, since an
object may have many attributes, it may have anomalous values for some at-
tributes, but ordinary values for other attributes. Furthermore, an object may
be anomalous even if none of its attribute values are individually anomalous.
For example, it is common to have people who are two feet tall (children) or
are 300 pounds in weight, but uncommon to have a two-foot tall person who
weighs 300 pounds. A general definition of an anomaly must specify how the

values of multiple attributes are used to determine whether or not an object
is an anomaly. This is a particularly important issue when the dimensionality
of the data is high.
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Global versus Local Perspective An object may seem unusual with re-
spect to all objects, but not with respect to objects in its local neighborhood.
For example, a person whose height is 6 feet 5 inches is unusually tall with re-
spect to the general population, but not with respect to professional basketball
players.

Degree to Which a Point Is an Anomaly The assessment of whether an
object is an anomaly is reported by some techniques in a binary fashion: An
object is either an anomaly or it is not. Frequently, this does not reflect the
underlying reality that some objects are more extreme anomalies than others.
Hence, it is desirable to have some assessment of the degree to which an object
is anomalous. This assessment is known as the anomalv or outlier score.

Identifying One Anomaly at a Time versus Many Anomalies at Once
In some techniques, anomalies are removed one at a time; i.e., the most anoma-
lous instance is identified and removed and then the process repeats. For other
techniques, a collection of anomalies is identified together. Techniques that
attempt to identify one anomaly at a time are often subject to a problem
known as masking, where the presence of several anomalies masks the pres-
ence of all. On the other hand, techniques that detect multiple outliers at once
can experience swamping, where normal objects are classified as outliers. In
model-based approaches, these effects can happen because the anomalies dis-
tort the data model.

Evaluation If class labels are available to identify anomalies and normal
data, then the effectiveness of an anomaly detection scheme can be evaluated
by using measures of classification performance discussed in Section 5.7. But
since the anomalous class is usually much smaller than the normal class, mea-
sures such as precision, recall, and false positive rate are more appropriate
than accuracy. If class labels are not available, then evaluation is difficult.
However, for model-based approaches, the effectiveness of outlier detection
can be judged with respect to the improvement in the model once anomalies
are eliminated.

Efficiency There are significant differences in the computational cost of var-
ious anomaly detection schemes. Classification-based schemes can require sig-
nificant resources to create the classification model, but are usually inexpensive
to apply. Likewise, statistical approaches create a statistical model and can
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then categorize an object in constant time. Proximity-based approaches nat-
urally have a time complexity of O(*'), where rn is the number of objects,
because the information they require can usually only be obtained by com-
puting the proximity matrix. This time complexity can be reduced in specific
casesl such as low-dimensional data, by the use of special data structure and
algorithms. The time complexity of other approaches is considered in Exercise
6 on page 681.

Road Map

The next four sections describe several major categories of anomaly detection
approaches: statistical, proximity-based, density-based, and cluster-based.
One or more specific techniques are considered within each of these categories.
In these sections, we will follow common practice and use the term outlier
instead of anomaly.

1-O.2 Statistical Approaches

Statistical approaches are model-based approaches; i.e., a model is created
for the data, and objects are evaluated with respect to how well they fit the
model. Most statistical approaches to outlier detection are based on building
a probability distribution model and considering how Iikely objects are under
that model. This idea is expressed by Definition 10.2.

Definition 10.2 (Probabilistic Definition of an Outlier). An outlier is
an object that has a low probability with respect to a probability distribution
model of the data.

A probability distribution model is created from the data by estimating the
parameters of a user-specified distribution. If the data is assumed to have a
Gaussian distribution, then the mean and standard deviation of the underlying
distribution can be estimated by computing the mean and standard deviation
of the data. The probability of each object under the distribution can then be
estimated.

A wide variety of statistical tests based on Definitiont0.2 have been devised
to detect outliers, or discordant observations, as they are often called in the
statistical literature. Many of these discordancy tests are highly specialized
and assume a level of statistical knowledge beyond the scope of this text. Thus,
we illustrate the basic ideas with a few examples and refer the reader to the
bibliographic notes for further pointers.
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Issues

Among the important issues facing this approach to outlier detection are the
following:

Identifying the specific distribution of a data set. While many types
of data can be described by a small number of common distributions, such
as Gaussian, Poisson, or binomial, data sets with non-standard distributions
are relatively common. Of course, if the wrong model is chosen, then an
object can be erroneously identified as an outlier. For example, the data
may be modeled as coming from a Gaussian distribution, but may actually
come from a distribution that has a higher probability (than the Gaussian
distribution) of having values far from the mean. Statistical distributions with
this type of behavior are common in practice and are known as heavy-tailed
distributions.

The number of attributes used. Most statistical outlier detection tech-
niques apply to a single attribute, but some techniques have been defined for
multivariate data.

Mixtures of distributions. The data can be modeled as a mixture of distri-
butions, and outlier detection schemes can be developed based on such models.
Although potentially more powerful, such models are more complicated, both
to understand and to use. For example, the distributions need to be identi-
fied before objects can be classified as outliers. See the discussion of mixture
models and the EM algorithm in Section 9.2.2.

10.2.1 Detecting Outliers in a Univariate Normal Distribution

The Gaussian (normal) distribution is one of the most frequently used dis-
tributions in statistics, and we will use it to describe a simple approach to
statistical outlier detection. This distribution has two parameters, p and o,
which are the mean and standard deviation, respectively, and is represented
using the notation N(p,o). Figure 10.1 shows the density function of l[(0,1).

There is little chance that an object (value) from a N(0, 1) distribution will
occur in the tails of the distribution. For instance, there is only a probability
of 0.0027 that an object lies beyond the central area between t3 standard
deviations. More generally, if c is a constant and r is the attribute value of
an object, then the probability that lzl ) c decreases rapidly as c increases.
Let a : prob(lrl > c). Table 10.1 shows some sample values for c and the
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o 4

Figure 10,1 . Probability density function of a Gaussian distribution with a mean of 0 and a standard
deviation of 1.

corresponding values for a when the distribution is l/(0,1). Note that a value
that is more than 4 standard deviations from the mean is a one-in-ten-thousand
occurrence.

Table 10.1, Sample pairs (c, a), a : prob(lrl > c) for a Gaussian distribution with mean 0 and
standard deviation 1.

) 0.25
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c a  fo r  N (0 ,1 )
1.00
1.50
2.00
2.50
3.00
3.50
4.00

0.3173
0.1336
0.0455
0.0124
0.0027
0.0005
0.0001

Because a value's distance
directly related to the value's
for whether an object (value)

c from the center of the N(0,1) distribution is
probability, it can be used as the basis of a test
is an outlier as indicated in Definition 10.3.
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Definition 10.3 (Outlier for a Single N(0,1) Gaussian Attribute). At
object with attribute value r from a Gaussian distribution with mean of 0 and
standard deviation 1 is an outlier if

l r l  > 
",

(10 .1)

where c is a constant chosen so that prob(lrl) ) c: e.

To use this definition it is necessary to specify a value for a. From the
viewpoint that unusual values (objects) indicate a value from a different dis-
tribution, c indicates the probability that we mistakenly classify a value from
the given distribution as an outlier. From the viewpoint that an outlier is a
rare value of a l/(0,1) distribution, a specifies the degree of rareness.

If the distribution of an attribute of interest (for the normal objects) has a
Gaussian distribution with mean p and a standard deviation o, i.e., a N(p,,o)
distribution, then to use Definition 10.3, we need to transform the attribute
r to a new attribute z, which has a ,A/(0,1) distribution. In particular, the
approach is to set z: (r - p)lo. (z is typically called a z score.) However, pr
and o are typically unknown and are estimated using the sample mean 7 and
sample standard deviation s". In practice, this works well when the number
of observations is large. However, we note that the distribution of z is not
actually N(0,1). A more sophisticated statistical procedure (Grubbs' test) is
explored in Exercise 7 on page 681.

LO.2.2 Outliers in a Multivariate Normal Distribution

For multivariate Gaussian observations, we would like to take an approach
similar to that given for a univariate Gaussian distribution. In particular,
we would like to classify points as outliers if they have low probability with
respect to the estimated distribution of the data. Furthermore? we would like
to be able to judge this with a simple test, for example, the distance of a point
from the center of the distribution.

However, because of the correlation between the different variables (at-
tributes), a rnultivariate normal distribution is not symmetrical with respect
to its center. Figure 10.2 shows the probability density of a two-dimensional
multivariate Gaussian distribution with mean of (0,0) and a covariance matrix
of

\ ' - / 1'oo
"-  \  o.zs3r3)
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If we are to use a simple threshold for whether an object is an outlier, then

we will need a distance measure that takes the shape of the data distribution
into account. The Mahalanobis distance is such a distance. See Equation 2.14

on page 81. The Mahalanobis distance between a point x and the mean of the
data x is shown in Equation 10.2.

mahalanobzs(x, x) :  (x -  x)S*1(x -  *) t , (10.2)

where S is the covariance matrix of the data.
It is easy to show that the Mahalanobis distance of a point to the mean of

the underlying distribution is directly related to the probability of the point.

In particular, the Mahalanobis distance is equal to the log of the probability

density of the point plus a constant. See Exercise 9 on page 682.

Example 10.1 (Outliers in a Multivariate Normal Distribution). Fig-
ure 10.3 shows the Mahalanobis distance (from the mean of the distribution)
for points in a two-dimensional data set. The points A (-4,4) and B (5, 5)
are outliers that were added to the data set, and their Mahalanobis distance is
indicated in the figure. The other 2000 points of the data set were randomly
generated using the distribution used for Figure 10.2.

Both A and B have large Mahalanobis distances. However, even though A
is closer to the center (the large black x at (0,0)) as measured by Euclidean dis-
tance, it is farther away than B in terms of the Mahalanobis distance because
the Mahalanobis distance takes the shape of the distribution into account.
In particular, point B has a Euclidean distance of 5t/2 and a Mahalanobis
distance of 24, while the point A has a Euclidean distance of 4Jd and a Ma-
halanobis distance of 35. I

10.2.3 A Mixture Model Approach for Anomaly Detection

This section presents an anomaly detection technique that uses a mixture
model approach. In clustering (see Section 9.2.2), the mixture model approach
assumes that the data comes from a mixture of probability distributions and
that each cluster can be identified with one of these distributions. Similarly,
for anomaly detection, the data is modeled as a mixture of two distributions,
one for ordinary data and one for outliers.

For both clustering and anomaly detection, the goal is to estimate the
parameters of the distributions in order to maximize the overall likelihood
(probability) of the data. In clustering, the EM algorithm is used to esti-
mate the parameters of each probability distribution. However, the anomaly
detection technique presented here uses a simpler approach. Initially, all the
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Figure 10,2. Probability density of points for the Gaussian distribution used to generate the points of
Figure 10.3.
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Figure 10,3. Mahalanobis distance of points from the center of a two-dimensional set of 2002 points.
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objects are put in a set of normal objects and the set of anomalous objects
is empty. An iterative procedure then transfers objects from the ordinary set
to the anomalous set as long as the transfer increases the overall likelihood of
the data.

Assume that the data set D contains objects from a mixture of two prob-

ability distributions: M, the distribution of the majority of (normal) objects,
and A, the distribution of anomalous objects. The overall probability distri-
bution of the data can be written as

D(x) :  (1 -  ) )M(x) +. la ix; . (10.3)

where x is an object and ,\ is a number between 0 and 1 that gives the expected
fraction of outliers. The distribrtion M is estimated from the data, while the
distribution A is often taken to be uniform. Let Mt and A1 be the set of
normal and anomalous objects, respectively, at time t. Initially, at time f : 0,
M0 : D and As is empty. At an arbitrary time l, the likelihood and log
likelihood of the entire data set D are given by the following two equations,
respectively:

L,(D) II
x i  e D

Lh(D) lMltog(I - ^) + 
!- 

log Pv, (*u) + lA| Iog.\ * ! log Pa, (x;) (to.s)
x , € M t  x i € 4 7

where Po, Pnr, and P4, are the probability distribution functions for D, M1
and A1, respectively. This equation can be derived from the general definition
of a mixture model given in Equation 9.6 (Section 9.2.2). To do so, it is
necessary to make the simplifying assumption that the probability is 0 for
both of the following situations: (1) an object in ,4 is a normal object, and (2)
an object in M is an outlier. Algorithm 10.1 gives the details.

Because the number of normal objects is large compared to the number of
anomalies, the distribution of the normal objects may not change much when
an object is moved to the set of anomalies. In that case, the contribution of
each normal object to the overall likelihood of the normal objects will remain
relatively constant. Furthermore, if a uniform distribution is assumed for
anomalies, then each object moved to the set of anomalies contributes a fixed
amount to the likelihood of the anomalies. Thus, the overall change in the
total likelihood of the data when an object is moved to the set of anomalies
is roughly equal to the probability of the object under a uniform distribution

po(xe): (,t - ,l),-,,*,ll. r,,,r*,)) (^,^,,_,U, e,,i*,)){ro.a)
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Algorithm 10.1 Likelihood-based outlier detection.
1: Initialization: At time t : 0, let Mr contain all the objects, while A1 is empty.

Let LL1(D) : LL(MI) + LL(AI) be the log likelihood of all the data.
2: for each point x that belongs to M1 do
3: Move x from M1 to A7 to produce the new data sets A1a1 and M7a1.
4: Compute the new log l ikelihood of D, LLt+r(D) : LL(Mt+r) + LL(At+r)
5: Compute the difference, A : LL^D) - Lh+r(D)
6: if A > c, where c is some threshold then
7: x is classified as an anomaly, i.e., M11y and ,4111 are left unchanged and

become the current normal and anomaly sets.
8: end if
9: end for

(weighted by ,\) minus the probability of the object under the distribution of
the normal data points (weighted by 1- )). Consequently, the set of anomalies
will tend to consist of those objects that have significantly higher probability
under a uniform distribution rather than under the distribution of the normal
objects.

In the situation just discussed, the approach described by Algorithm 10.1
is roughly equivalent to classifying objects with a low probability under the
distribution of normal objects as outliers. For example, when applied to the
points in Figure 10.3, this technique would classify points A and B (and other
points far from the mean) as outliers. However, if the distribution of the nor-
mal objects changes significantly as anomalies are removed or the distribution
of the anomalies can be modeled in a more sophisticated manner, then the
results produced by this approach will be different than the results of simply
classifying low-probability objects as outliers. Also, this approach can work
even when the distribution of obiects is multimodal.

IO.2.4 Strengths and Weaknesses

Statistical approaches to outlier detection have a firm foundation and build
on standard statistical techniques, such as estimating the parameters of a
distribution. When there is sufficient knowledge of the data and the type
of test that should be applied these tests can be very effective. There are a
wide variety of statistical outliers tests for single attributes. Fewer options
are available for multivariate data, and these tests can perform poorly for
high-dimensional data.
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10.3 Proximity-Based Outlier Detection

Although there are several variations on the idea of proximity-based anomaly
detection, the basic notion is straightforward. An object is an anomaly if it
is distant from most points. This approach is more general and more easily
applied than statistical approaches, since it is easier to determine a meaningful
proximity measure for a data set than to determine its statistical distribution.

One of the simplest ways to measure whether an object is distant from
most points is to use the distance to the k-nearest neighbor. This is captured
by Definition 10.4. The lowest value of the outlier score is 0, while the highest
value is the maximum possible value of the distance function-usually infinity.

Definition 10.4 (Distance to k-Nearest Neighbor). The outlier score of
an object is given by the distance to its k-nearest neighbor.

Figure 10.4 shows a set of two-dimensional points. The shading of each
point indicates its outlier score using a value of k : 5. Note that outlying
point C has been correctly assigned a high outlier score.

The outlier score can be highly sensitive to the value of k. If k is too
small, e.8., 1, then a small number of nearby outliers can cause a low outlier
score. For example, Figure 10.5 shows a set of two-dimensional points in which
another point is close to C. The shading reflects the outlier score using a value
of k : 1. Note that both C and its neighbor have a low outlier score. If k is
too large, then it is possible for all objects in a cluster that has fewer objects
than k to become outliers. For example, Figure 10.6 shows a two-dimensional
data set that has a natural cluster of size 5 in addition to a larger cluster of
size 30. For k : 5, the outlier score of all points in the smaller cluster is very
high. To make the scheme more robust to the choice of k, Definition 10.4 can
be modified to use the average ofthe distances to the first k-nearest neighbors.

10.3.1 Strengths and Weaknesses

The distance-based outlier detection scheme described above, and other re-
lated schemes, are simple. However, proximity-based approaches typically
take O(m2) time. For large data sets this can be too expensive, although
specialized algorithms can be used to improve performance in the case of low-
dimensional data. Also, the approach is sensitive to the choice of parameters.
Furthermore, it cannot handle data sets with regions of widely differing den-
sities because it uses global thresholds that cannot take into account such
density variations.
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To illustrate this, consider the set of two-dimensional points in Figure
10.7. This figure has one rather loose cluster of points, another dense cluster
of points, and two points, C and D, that are quite far from these two clusters.
Assigning the outlier score to points according to Definition 10.4 for k : 5,
correctly identifies point C to be an outlier, but shows a low outlier score for
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point D. In fact, the outlier score for D is much lower than many points that
are oart of the loose cluster.

LO.4 Density-Based Outlier Detection

From a density-based viewpoint, outliers are objects that are in regions of low
density.

Definition 10.5 (Density-Based Outlier). The outlier score of an object
is the inverse of the density around an object.

Density-based outlier detection is closely related to proximity-based outlier
detection since density is usually defined in terms of proximity. One common
approach is to define density as the reciprocal of the average distance to the k
nearest neighbors. If this distance is small, the density is high, and vice versa.
This is captured by Definition 10.6.

Definition 10.6 (Inverse Distance).

where l/(x, k) is the set containing the k-nearest
the size of that set, and y is a nearest neighbor.

Another definition of density is the one used

(10.6)

neighbors of x, ll/(x, k)l is

by the DBSCAN clustering

d,ensi,ty(x,-l :(ffi)-'

algorithm. See Section 8.4.

Definition 10.7 (Count of Points within a Given Radius). The density
around an object is equal to the number of objects that are within a specified
distance d of the object.

The parameter d needs to be chosen carefully. If d is too small, then many
normal points may have low density and thus a high outlier score. If d is
chosen to be large, then many outliers may have densities (and outlier scores)
that are similar to normal points.

Detecting outliers using any of the definitions of density has similar char-
acteristics and limitations to those of the proximity-based outlier schemes
discussed in Section 10.3. In particular, they cannot identify outliers correctly
when the data contains regions of differing densities. (See Figure 10.7.) To
correctly identify outliers in such data sets, we need a notion of density that
is relative to the neighborhood of the object. For example, point D in Figure
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10.7 has a higher absolute density, according to Definitions 10.6 and 10.7, than
point A, but its density is lower relative to its nearest neighbors.

There are many ways to define the relative density of an object. One
method that is used by the SNN density-based clustering algorithm is discussed
in Section 9.4.8. Another method is to compute the relative density as the ratio
of the density of a point x and the average density of its nearest neighbors y
as follows:

&uerage relat'iue densi,ty(x,k) :
density(x, k)

(10.7)
Dye n(*,r) densi'tv(v, k) l lN (x' k)l '

10.4.1 Detection of Outliers Using Relative Density

In this section, we describe a technique that is based on the notion of relative
density. This technique, which is a simplified version of the Local Outlier
Factor (LOF) technique (see bibliographic notes), is described in Algorithm
10.2. The details of the algorithm are examined in more detail below, but in
summary, it works as follows. We calculate the outlier score for each object
for a specified number of neighbors (k) by first computing the density of an
object density(x,k) based on its nearest neighbors. The average density of
the neighbors of a point is then calculated and used to compute the average
relative density of the point as indicated in Equation 10.7. This quantity
provides an indication of whether x is in a denser or sparser region of the
neighborhood than its neighbors and is taken as the outlier score of x.

Algorithm 10.2 Relative density outlier score algorithm.
1: {k is the number of riearest neighbors}
2: for all objects x do
3: Determine l[(x, k), the k-nearest neighbors of x.
4: Determine dens'ity(x,k), the density of x usinlg its nearest neighbors, i.e., the

objects in l[(x, k).
end for
for all objects x do

Set the outli.er score(x,k) : ou"roge relat'iae dens'ity(x,k) from Equation
r0.7.

8: end for

Example 10.2 (Relative Density Outlier Detection). We illustrate the
performance of the relative density outlier detection method by using the ex-
ample data set shown in Figure 10.7. Here, k : 10. The outlier scores for

5 :
o :
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o o

Figure 10.8. Relative density (LOF) outlier scores for two-dimensional points of Figure 10.7.

these points are shown in Figure 10.8. The shading of each point is determined
by its score; i.e., points with a high score are darker. We have labeled points
A, C, and D, which have the largest outlier scores, with these values. Respec-
tively, these points are the most extreme outlier, the most extreme point with
respect to the compact set of points, and the most extreme point in the loose
set of points.

LO.4.2 Strengths and Weaknesses

Outlier detection based on relative density gives a quantitative measure of the
degree to which an object is an outlier and can work well even if data has
regions of differing density. Like distance-based approaches, these approaches
naturally have O(m2) time complexity (where rn is the number of objects),
although this can be reduced to O(rnlog rn) for low-dimensional data by using
special data structures. Parameter selection can also be difficult, although the
standard LOF algorithm addresses this by looking at a variety of values for k
and then taking the maximum outlier scores. However, the upper and lower
bounds of these values still need to be chosen.
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10.5 Clustering-Based Techniques

Cluster analysis finds groups of strongly related objects, while anomaly detec-
tion finds objects that are not strongly related to other objects. It should not
be surprising, then, that clustering can be used for outlier detection. In this
section, we will discuss several such techniques.

One approach to using clustering for outlier detection is to discard small
clusters that are far from other clusters. This approach can be used with any
clustering technique, but requires thresholds for the minimum cluster size and
the distance between a small cluster and other clusters. Often, the process is
simplified by discarding all clusters smaller than a minimum size. This scheme
is highly sensitive to the number of clusters chosen. AIso, it is hard to attach
an outlier score to objects using this scheme. Note that considering groups
of objects as outliers extends the notion of outliers from individual objects to
groups of objects, but does not change anything essential.

A more systematic approach is to first cluster all objects and then assess
the degree to which an object belongs to any cluster. For prototype-based
clustering, the distance of an object to its cluster center can be used to mea-
sure the degree to which the object belongs to a cluster. More generally, for
clustering techniques that are based on an objective function, we can use the
objective function to assess how well an object belongs to any cluster. In par-
ticular, if the elimination of an object results in a substantial improvement in
the objective, then we would classify the object as an outlier. To illustrate,
for K-means, eliminating an object that is far from the center of its associated
cluster can substantially improve the sum of the squared error (SSE) of the
cluster. In summary, clustering creates a model of the data and anomalies
distort that model. This idea is captured in Definition 10.8.

Definition 10.8 (Clustering-Based Outlier). An object is a cluster-based
outlier if the object does not strongly belong to any cluster.

When used with clustering schemes that have an objective function, this
definition is a special case of the definition of a model-based anomaly. At-
though Definition 10.8 is more natural for prototype-based schemes or schemes
that have an objective function, it can also encompass density- and connectivity-
based clustering approaches to outlier detection. In particular, for density-
based clustering, an object does not strongly belong to any cluster ifits density
is too low, while for connectivity-based clustering, an object does not strongly
belong to any cluster if it is not strongly connected.
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Below, we will discuss issues that need to be addressed by any technique
for clustering-based outlier detection. Our discussion will focus on prototype-
based clustering techniques, such as K-means.

10.5.1 Assessing the Extent to Which an Object Belongs to a
Cluster

For prototype-based clusters, there are several ways to assess the extent to
which an object belongs to a cluster. One method is to measure the distance
of the object to the cluster prototype and take this as the outlier score of
the object. However, if the clusters are of differing densities, then we can
construct an outlier score that measures the relative distance of an object
from the cluster prototype with respect to the distances of the other objects
in the cluster. Another possibility, provided that the clusters can be accurately
modeled in terms of Gaussian distributions, is to use the Mahalanobis distance.

For clustering techniques that have an objective function, we can assign
an outlier score to an object that reflects the improvement in the objective
function when that obiect is eliminated. However, assessing the degree to
which a point is an outlier based on the objective function can be compu-
tationally intensive. For that reason) the distance-based approaches of the
previous paragraph are often preferred.

Example 10.3 (Clustering-Based Example). This example is based on
the set of points shown in Figure 10.7. Prototype-based clustering uses the
K-means algorithm, and the outlier score of a point is computed in two ways:
(t) bV the point's distance from its closest centroid, and (2) by the point's
relative distance from its closest centroid, where the relative distance is the
ratio of the point's distance from the centroid to the median distance of all
points in the cluster from the centroid. The latter approach is used to adjust
for the large difference in density between the compact and loose clusters.

The resulting outlier scores are shown in Figures 10.9 and 10.10. As before,
the outlier score, measured in this case by the distance or relative distance,
is indicated by the shading. We use two clusters in each case. The approach
based on raw distance has problems with the differing densities of the clusters,
e.8., D is not considered an outlier. For the approach based on relative dis-
tances, the points that have previously been identified as outliers using LOF
(A, C, and D) also show up as outliers here. r
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LO.5.2 Impact of Outliers on the Initial Clustering

If outliers are detected by clustering, there is a question of whether the results
are valid since outliers affect the clustering. To address this issue, the fbllowing
approach can be used: objects are clustered, outliers are removed, and then
the objects are clustered again. While there is no guarantee that this approach
will yield optimal results, it is easy to use. A more sophisticated approach is
to have a special group for objects that do not currently fit well in any cluster.
This group represents potential outliers. As the clustering process proceeds,
clusters change. Objects that no longer belong strongly to any cluster are
added to the set of potential outliers, while objects currently in the set are
tested to see if they now strongly belong to a cluster and can be removed from
the set of potential outliers. The objects remaining in the set at the end of
the clustering are classified as outliers. Again, there is no guarantee of an
optimal solution or even that this approach will work better than the simpler
one described previously. For example, a cluster of noise points may look like a
real cluster with no outliers. This problem is particularly serious if the outlier
score is computed using the relative distance.

10.5.3 The Number of Clusters to IJse

Clustering techniques such as K-means do not automatically determine the
number of clusters. This is a problem when using clustering in outlier detec-
tion, since whether an object is considered an outlier or not may depend on
the number of clusters. For instance, a group of 10 objects may be relatively
close to one another, but may be included as part of a larger cluster if only
a few large clusters are found. In that case, each of the 10 points could be
regarded as an outlier, even though they would have formed a cluster if a large
enough number of clusters had been specified.

As with some of the other issues, there is no simple answer to this problem.
One strategy is to repeat the analysis for different numbers of clusters. Another
approach is to find a large number of small clusters. The idea here is that (1)
smaller clusters tend to be more cohesive and (2) if an object is an outlier
even when there are a large number of small clusters, then it is likely a true
outlier. The downside is that groups of outliers may form small clusters and
thus escape detection.

LO.5.4 Strengths and Weaknesses

Some clustering techniques, such as K-means, have linear or near-linear time
and space complexity and thus, an outlier detection technique based on such
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. the definition of a cluster is often com-

plementary to that of an outlier and thus, it is usually possible to find both

clusters and outliers at the same time. On the negative side, the set of outliers

procluced and their scores can be heavily dependent upon the number of clus-

ters used as well as the plesence of outliers in the data. For example, clusters

produced by prototype-based algorithms can be distorted by the presence of

outliers. The quality of outliers produced by a clustering algorithm is heavily

impacted by the quality of clusters produced by the algorithm. As discussed

in Chapters 8 and 9, each clustering algorithm is suitable only for a certain

type of d.ata; hence the clustering algorithm needs to be chosen carefully.

10.6 Bibliographic Notes

Anomaly detection has a long history, particularly in statistics, where it is

known as outlier detection. Relevant books on the topic are those of Barnett

and Lewis [464], Hawkins [483], and Rousseeuw and Leroy [513]. The article

by Beckman and Cook [466] provides a general overview of how statisticians

look at the subject of outlier detection and provides a history of the subject

dating back to comments by Bernoulli rn 1777. Also see the related articles

1467, 4841. Another general article on outlier detection is the one by Barnett

[+0f1. erti"les on finding outliers in multivariate data include those by Davies

and Gather 1474), Gnanadesikan and Kettenring 1480], Rocke and woodruff

[tr11], Rousr""n* and van Zomerenand 1515], and Scott [516]. Rosner [512]
provides a discussion of finding multiple outliers at the same time.

An extensive survey of outlier detection methods is provided by Hodge and

Austin [486]. Markou and singh [506, 507] give a two-part review of techniques

for novelty detection that covers statistical and neural network techniques,

respectively. Grubbs' procedure for detecting outliers was originally described

in la81]. Thg mixture model outlier approach discussed in section 10-2'3 is

from Eskin [476]. The notion of a distance-based outlier and the fact that this

definition can include many statistical definitions of an outlier was described

by Knorr et al. 1496-498]. The LoF technique (Breunig et al. [468, 469])

grew out of DBSCAN. Ramaswamy et al. 1510] propose a distance-based

outlier detection procedure that gives each object an outlier score based on

the distance of its k-nearest neighbor. Efficiency is achieved by partitioning

the data using the first phase of BIRCH (Section 9.5.2). Chaudhary et al.

[470] use k-d trees to improve the efficiency of outlier detection, while Bay and

schwabacher [465] use randomization and pruning to improve performance.

Aggarwal and Yu [462] use projection to address outlier detection for high-
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dimensional data, while Shyu et al. [518] use an approach based on principal
components. A theoretical discussion of outlier removal in high-dimensional
space can be found in the paper by Dunagan and Vempala [475]. The use
of information measures in anomaly detection is described by Lee and Xiang

1504], while an approach based on the 12 measure is given by Ye and Chen

[520].
Many different types of classification techniques can be used for anomaly

detection. A discussion of approaches in the area of neural networks can be
found in papers by Hawkins et al. [485], Ghosh and Schwartzbard 1479], and
Sykacek [519]. Recent work on rare class detection includes the work of Joshi
et al. [490-494]. The rare class problem is also sometimes referred to as the
imbalanced data set problem. Of relevance are an AAAI workshop (Japkowicz

1488]), an ICML workshop (Chawla et al. [a71]), and a special issue of SIGKDD
Explorations (Chawla et al. la72l).

Clustering and anomaly detection have a long relationship. In Chapters 8
and 9, we considered techniques, such as BIRCH, CURE, DENCLUE, DB-
SCAN, and SNN density-based clustering, which specifically include tech-
niques for handling anomalies. Statistical approaches that discuss this re-
lationship are described in papers by Scott [516] and Hardin and Rocke [482].

In this chapter, we have focused on basic anomaly detection schemes. We
have not considered schemes that take into account the spatial or temporal
nature of the data. Shekhar et al. [517] provide a detailed discussion of the
problem of spatial outliers and present a unified approach to spatial outlier
detection. The issue of outliers in time series was first considered in a sta-
tistically rigorous way by Fox [478]. Muirhead [508] provides a discussion of
different types of outliers in time series. Abraham and Chuang [ 6t] propose a
Bayesian approach to outliers in time series, while Chen and Liu [473] consider
different types of outliers in time series and propose a technique to detect them
and obtain good estimates of time series parameters. Work on finding deviant
or surprising patterns in time series databases has been performed by Jagadish
et aI. [487] and Keogh et al. [495]. Outlier detection based on geometric ideas,
such as the depth of convex hulls, has been explored in papers by Johnson et
al. [489], Liu et al. [505], and Rousseeuw et al. [51a].

An important application area for anomaly detection is intrusion detection.
Surveys of the applications of data mining to intrusion detection are given by
Lee and Stolfo [502] and Lazarevic et al. [501]. In a different paper, Lazarevic
et al. [500] provide a comparison of anomaly detection routines specific to
network intrusion. A framework for using data mining techniques for intrusion
detection is provided by Lee et al. [503]. Clustering-based approaches in the
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area of intrusion detection include work by Eskin et al. 14771, Lane and Brodley

[499], and Portnoy et al. [509].
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LO.7 Exercises

1 . Compare and contrast the different techniques for anomaly detection that were
presented in Section I0.7.2. In particular, try to identify circumstances in which
the definitions of anomalies used in the different techniques might be equivalent
or situations in which one might make sense, but another would not. Be sure
to consider different types of data.

Consider the following definition of an anomaly: An anomaly is an object that
is unusually influential in the creation of a data model.

(a) Compare this definition to that of the standard model-based definition of
an anomaly.

(b) For what sizes of data sets (small, medium, or large) is this definition
appropriate?

In one approach to anomaly detection, objects are represented as points in a
multidimensional space, and the points are grouped into successive shells, where
each shell represents a layer around a grouping of points, such as a convex hull.
An object is an anomaly if it lies in one of the outer shells.

(a) To which of the definitions of an anomaly in Section 10.1.2 is this definition
most closely related?

(b) Name two problems with this definition of an anomaly.

Association analysis can be used to find anomalies as follows. Find strong asso-
ciation patterns, which involve some minimum number of objects. Anomalies
are those objects that do not belong to any such patterns. To make this more
concrete, we note that the hyperclique association pattern discussed in Section
6.8 is particularly suitable for such an approach. Specifically, given a user-
selected h-confidence level, maximal hyperclique patterns of objects are found.
All objects that do not appear in a maximal hyperclique pattern of at least size
three are classified as outliers.

2.

3 .

4 .


