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Abstract

A system is presented which will identify speakers that it
was trained to recognize with 100% accuracy. This system
will also classify inputs that it has not been trained to
recognize as unknown. The high degree of confidence
offered by this system is attributed to careful processing of
the input data sets. Only easily distinguishable segments of
the speech samples are passed as inputs to the artificial
neural network (ANN). Additionally, sufficient input infor-
mation is providedwiththe training inputs to enable the ANN
to rapidly train and subsequently classify speakers. This
system may be readily implemented in hardware using
existing technology. Hardware implementation will render
near real-time performance. Applications that would be
enhanced by the use of this system include electronic
surveillance and computer security.

1 Introduction

The speaker identification system consists of a speech
sampler, a signal pre-processor, an ANN, and a network
post-processor. The system description begins with a dis-
cussion of the techniques used to sample and window data.
Pre-processing techniques including definitions of the short-
time energy, zero-crossing rate, Discrete Hartley Transform
(DHT), and characteristic eigenvector of each speech seg-
ment are presented. An example using data from the
DARPA TIMIT speech corpus illustrates the pre-processing
procedure. Neural network employment including feature
vector formulation and post-processing of the network
output concludes the system description. Experimental
results are provided and demonstrate system effectiveness.

2 Sampling and windowing technique
The speech is sampled at 8 kHz and segmented using a

128 point (16 ms) rectangular window. A short window
ensures the stationarity of data within a segment and allows
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maximum selectivity when choosing segments to process
from short-duration speech samples. Each segmentoverlaps
the previous segment by 64 samples. The overlap effectively
samples the rectangular window output at its Nyquist rate.
The bandwidth of the rectangular window is
8000
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3 Pre-processing technique

The short-time energy and zero-crossing rate (ZCR) are
used to differentiate between voiced and unvoiced speech.
The discrete convolution

E,= Y s (m)w(n—m) @
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where s(m) is the speech signal and w(m) is the windowing
function defines the short-time energy for the n* segment[1].
It emphasizes the differences in amplitude between voiced
speech, unvoiced speech and non-speech portions of the
input data set.

The ZCR provides a simple, but accurate, means of
spectral measurement [2]. This spectral measure is used to
estimate the fundamental vocal tract frequency and charac-
terize the voiced or unvoiced nature of speech segments.
The fundamental frequency of a signal as a function of the
Zero-crossing rate is
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where f, is the sampling frequency. The ZCR of the n*
segment is

ZCR 3)
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where the sign function is defined to be

sgn(x) = { bxz O] . 5)
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As used in the speaker identification system, both the
short-time energy and ZCR for each speech segment are
compared to thresholds. These thresholds are adjusted until
the desired percentage of speech segments pass. This
thresholding procedure ensures that the data processed and
subsequently presented to the ANN is the most distinctive in
nature.

Segments with energy and ZCR above the thresholds are
further processed by taking their Discrete Hartley Transform
(DHT). The DHT developed by Bracewell [3] is defined to
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The relationship between the DHT and the DFT is

H[s(1)] = M(w)-[cos () +sin ()] 0]
where M(w) is the DFT magnitude and ¢(w) is the DFT
phase[4]. Equation (7) illustrates the convenient way that
the DHT incorporates magnitude and phase information into
a single real term.

The DHT coefficients of the selected speech segments
are further processed by correlating them. The k*lag of the
autocorrelation of a speech segment is defined as

LS ®
"=y N H(m)H(m+k)
m=0

where H(m) refers to the DHT coefficients for the segment,
N is the window length, and 0<k<M-1. AnM X M
dimensional toeplitz matrix of the form
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is formed for the n* selected segment. Computation of the
eigenvector associated with the largest eigenvalue of R
completes the pre-processing of a speech segment. This
eigenvector characterizes a processed speech segment and
is presented along with the short-time energy and ZCR as the
input feature vector to the ANN.

To illustrate the pre-processing procedure, the phoneme
“1y” isisolated for two male speakers from region one of the
DARPA TIMIT speech corpus. A single segment is pro-
cessed for each speaker. The time domain speech segments
and resulting eigenvectors with M = 16 are shown in Fig. 1
for the two speakers.
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Fig. 1:  Time domain speech segments and processed characteris-

tic eigenvectors for two speakers.

To illustrate the influence of the phase on the eigenvec-
tors, the same segments were processed using FFT mag-
nitudes instead of the DHT coefficients. The resulting
eigenvectors are shown in Fig. 2.

Eigenvector -- Speaker 1

03 Eigenvector -- S:Exer 2

Magnitude

Element

Fig.2:  Eigenvectorsderived from FFT magnitudes for the speech

segments of Fig. 1.

Comparing the eigenvectors of Fig. 1 to those of Fig. 2,
it is clear that including phase information in the pre-
processing procedure produces more distinct feature vec-
tors.

4 The artificial neural network

Although the ANN is a major part of this system, it is
completely generic in nature and its function is defined
completely by the input vectors and the desired output. A
standard Back-Propagation (BP) or Learning Vector Quan-
tization (L VQ) network is used for the speaker identification
system. Whereas the LVQ network uses a Kohonen layer to
compute the Euclidean distance between the input vector
and each processing element's (PE's) weight vector, the BP
network uses the hyperbolic tangent for its PE transfer
function[5].



The number of input PE’s is governed by the number of
elements in the input vector and the number of desired
outputs independent of type of network employed. Each
desired output has a corresponding input PE with a linear
transfer function. There are normally three or fewer hidden
layers. The number of PE’s for the first hidden layer is
usually the same as the input layer. If additional hidden
layersare used, they typically have fewer PE’s than the input
layer. Figure 3 illustrates a typical BP ANN architecture.

Known Speakers

Output Layer

Hidden Layer

Hidden Layer

Hidden Layer

Input Layer

Input Vector

Fig.3: Typical BP ANN architecture.

The ANN of the speaker identification system must be
trained to recognize the known speakers before it can be
used. A training file of input vectors consisting of the short-
time energy, the ZCR, and the principal eigenvector pro-
cessed from the correlated DHT coefficients is required.
Additionally, each input training vector is appended with a
desired output code having the same number of elements as
there are outputs. These outputs represent the known
speakers. The output code consists of a one for the desired
output and a zero for all other outputs. Figure 4 shows the
contents of a training file of input vectors for a two known
speaker system (J = 2).

The short-time energy and ZCR are used to clarify
whether a sample represents the voiced or unvoiced speech
of a particular speaker. This accelerates the learning rate of
the ANN by reducing the ambiguity caused by having two
types of input vectors with very different characteristics
representing the same speaker. Itis desirable to provide the
ANN with as many training inputs as possible to ensure
accurate classification.

The ANN s trained until the desired accuracy is obtained.
Once trained, the speaker identification system may be used.
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Short-Time Energy, ZCR, E(1), E(2), ... , EM), 1,
ShortTime Energy, ZCR, E(1), E(2), ... , E(M), 1,
L]
ShortTime Energy, ZCR, E(1), E(2), ... ,EM), 1, 0
Short-Time Energy, ZCR, E(1), E(2), ... ,EM), 0,1
ShortTime Energy, ZCR, E(1), E(2), ... ,EM), 0, 1
.
Short-Time Energy, ZCR, E(1), E(2), ... ,EM), 0,1

Fig.4: Typical training file of input vectors for a two known

speaker system.

A speech sample is collected and processed. A file of input
vectors similar to those of Fig. 4 without the training codes
is presented to the ANN.

5 ANN post-processing

The outputs of the ANN must be interpreted so that a
classification can be assigned to each speech sample. The
ANN outputs for the feature vectors of the chosen segments
from each speech sample are compared to a threshold,
typically > 0.5, and then tallied. This threshold is required
for BP networks because the output values normally range
from O to 1. Conversely, an LVQ network quantizes its
outputs at 0 or 1 and does not require a threshold. If a high
percentage of the outputs are tallied for one category with a
corresponding low percentage for the others, aclassification
is made. If a sample does not meet this criterion, a
classification of unknown is assigned.

6 Experimental results

The system has been tested on alimited case with superior
results. Speech samples were obtained from three male
speakers who exhibited similar pitch levels in their speech.
The ANN was trained torecognize two of the speakers using
eight samples of speech per speaker. Each sample was two
seconds in length. Samples from the third speaker were
reserved to test the system’s ability to reject an unknown
speaker. With short-time energy and ZCR thresholds set to
retain 12% of the speech segments and 16 element eigenvec-
tors, 350 feature vectors per speaker were presented to the
ANN for training. A BP ANN was trained for 60,000 cycles
and then tested. The results of that test are shown in table 1.

The output value threshold to assign a choice was set at
0.8. The BP ANN correctly identified both speakers with
significantly more accuracy thanitdid the unknown speaker.
The same data was presented to an LVQ ANN. In this case,



the unknown speaker was rejected with more confidence
than with the BP ANN because the outputs were essentially
split between the two known speakers. Table 2 shows the
results of the test using an LVQ ANN.,

Speaker Choice 1 Choice 2
1 58/72 0/72
2 4/72 55/72
unknown 111/205 44/205
Table1:  Results of test with two known speakers, one un-
known speaker, and a BP ANN.
Speaker Choice 1 Choice 2
1 71/72 1/72
2 11/72 61/72
unknown 102/205 103/205

Table 2: Results of test with two known speakers, one un-
known speaker, and an LVQ ANN.

When the output is considered in a statistical sense the
ANN demonstrates the ability to classify speakers with no
ambiguity. It is interesting to note that in this BP case, the
RMS errornever converged during the training phase before
conducting the test. This indicates that a restrictive RMS
error threshold is not necessary to guarantee robust perfor-
mance of the system.

7 Conclusions

The speakeridentification system was successfully tested.
Although the test was limited, results indicate that it will
perform well in more general cases. It is important to use
phase information when pre-processing the data; the DHT
conveniently combines phase and magnitude information
into a single real term. Quantities such as the short-time
energy and ZCR characterize the voiced or unvoiced nature
of a speech segment and are necessary to expedite training
and testing of the ANN. The thresholding scheme to choose
which speech segments to process ensures that only distinc-
tive portions of the speech sample are presented to the ANN
for classification.
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