
2528 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

A Deep Neural Network-Driven Feature
Learning Method for Multi-view
Facial Expression Recognition

Tong Zhang, Wenming Zheng, Member, IEEE, Zhen Cui, Yuan Zong, Jingwei Yan, and Keyu Yan

Abstract—In this paper, a novel deep neural network (DNN)-
driven feature learning method is proposed and applied to multi-
view facial expression recognition (FER). In this method, scale
invariant feature transform (SIFT) features corresponding to
a set of landmark points are first extracted from each facial
image. Then, a feature matrix consisting of the extracted SIFT
feature vectors is used as input data and sent to a well-
designed DNN model for learning optimal discriminative features
for expression classification. The proposed DNN model employs
several layers to characterize the corresponding relationship
between the SIFT feature vectors and their corresponding high-
level semantic information. By training the DNN model, we are
able to learn a set of optimal features that are well suitable for
classifying the facial expressions across different facial views.
To evaluate the effectiveness of the proposed method, two
nonfrontal facial expression databases, namely BU-3DFE and
Multi-PIE, are respectively used to testify our method and the
experimental results show that our algorithm outperforms the
state-of-the-art methods.

Index Terms—Deep neural network (DNN), multi-view facial
expression recognition, scale invariant feature transform (SIFT).

I. INTRODUCTION

FACIAL expression recognition (FER) has become a hot
research topic of human-computer interaction (HCI) and

drawn a lot of attention due to its great potential in multimedia
applications, e.g. digital entertainment, customer service, driver
monitoring [1] and so on. HCI would become more friendly
and natural if computers are able to recognize affects as hu-
man beings, which can benefit from solving FER problems.
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FER aims to analyze and classify a given facial image into one
of the six commonly used emotion types [2], where the six
emotion categories are angry, disgust, fear, happy, sad and sur-
prise. Numerous algorithms of FER have been proposed in the
literatures during the past several years, including expression
recognition from frontal and non-frontal facial images. Com-
paring to frontal FER, non-frontal FER is more challenging and
more applicable in real scenarios. However, only a small part
of algorithms among the proposed various methods address this
challenging issue [3]–[9]. For both frontal and non-frontal FER
problems, a general recognition framework appeared in most
of previous works can be divided into two major steps, one is
the feature extraction and the other is classifier construction.
For the classifier construction, most of the popular classifiers,
such as support vector machine (SVM) and Bayes classifier,
together with some unsupervised learning techniques are em-
ployed in the FER problem. Nevertheless, it is notable that the
FER approaches based on the aforementioned framework need
to be optimized by tuning parameters within each step and no
feedbacks are provided from one step to another.

To extract the facial features, various image features are em-
ployed in the previous papers, such as local binary pattern (LBP)
[6], [10], local phase quantization [1], histograms of oriented
gradients [11], [12] and scale-invariant feature transform (SIFT)
[13]. In [6], Moore and Bowden proposed the method of using
LBP features to deal with the multi-view FER issue, in which
the LBP are extracted from facial images which are divided
into several blocks. Then a multi-class SVM is used for clas-
sification. Rudovic et al. proposed another algorithm to cope
with the non-frontal FER problem in [7], in which the authors
used a coupled Gaussian process regression model to map the
facial points in non-frontal facial image to those in the frontal
one. Thus the state-of-the-art algorithms of frontal FER can be
applied to dealing with the non-frontal FER problem. In [8]
and [9], Zheng et al. propose to use SIFT features extracted
from the landmark points of certain locations of each facial
image, such as the landmark points near mouth and eyes, to de-
scribe the facial image for expression recognition, in which high
classification accuracy was reported. Among the various facial
features, SIFT has demonstrated promising performance due
to its robust property to image scaling, rotation, occlusion and
illumination difference.

In contrast to the aforementioned recognition frameworks, a
new recognition framework based on deep learning network,
such as convolution neural network (CNN) or deep belief net-
work (DBN), was presented in recent years. This new framework
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had been employed to fulfill various tasks in image processing
and achieved great success. Especially, CNN has been applied
for image analysis [14]–[16], face recognition [17], FER [18],
action recognition [19] and so on. In CNN, convolution layers,
pooling layers and some other kinds of common neural layers
are usually stacked iteratively to extract some high-level seman-
tic features. In the task of image classification, raw images are
directly used as the input data and fed into a multi-layer CNN
framework. After training on a large-scale dataset with a back-
propagation algorithm [20], the trained CNN is able to capture
discriminative features of images. In contrast to CNN, DBN uses
multiple layers of feature-detecting neurons to learn the feature
representation hierarchically and performs backpropagation for
a global optimization [21]–[23]. As a non-linear model, DBN
has been extensively applied to various problems, such as hand-
written digits recognition and FER in [24], [25]. However, as
mentioned in previous works, when original images are em-
ployed as inputs, the training dataset should be large enough
so that the CNN or DBN model is able to learn effective im-
age representation during the training period. Otherwise, the
over-fitting problem may occur and result in lower classifica-
tion accuracies. To address this problem, additional data is often
introduced to train the CNN or DBN model, just as the method
proposed in [26].

The recent development of neural systems for recognizing
human’s facial emotions revealed that the brain perception of
human’s facial expression could be divided into several ma-
jor periods happening in different brain areas [27]. The first
period is about the low level salient image feature extraction
occurring in the occipitotemporal cortex, and the other periods
are about the high level emotional semantic feature learning as
well as the emotion perception happening in other brain areas
such as frontoparietal cortex, orbitofrontal cortex and amygdala
[27]. Inspired by the neural systems working mechanism on
facial emotion perception, here we develop a special deep neu-
ral network (DNN) for the multi-view FER task on a relatively
small dataset.

To imitate the first period of the neural cognition system on
FER, and meanwhile to alleviate the aforementioned over-fitting
problem, we accurately detect those salient facial landmarks
covering major expression units of faces and then extract low-
level SIFT descriptors from those salient facial landmarks as
robust local appearance models to input the sequent network
units. Such a process can benefit for characterizing subtle ex-
pression changes when facing overwhelming information such
as facial pose, personal ID, etc.

According to the facial action coding system developed by
Ekman et al. [30], different facial regions play different roles in
FER. For example, those facial landmarks of the regions around
eyes and mouth may contribute more to expression recognition
than other landmark points. Consequently, it is reasonable to
consider different contributions of different landmark points lo-
cated at different facial regions. This intuition motivates us to
introduce a new kind of layer in our DNN which learns discrimi-
native facial features across different facial landmark points with
multi-channel projection matrices, named projection layer. In
contrast to those traditional multi-view FER approaches which
need to firstly estimate the facial pose and then use the pose-

specific expression recognition model to handle this problem,
the proposed method can deal with the multi-view FER problem
without requiring any facial pose estimation and hence is more
suitable for the practical FER problem.

To further extract high-level facial expression features, we
use 1D convolutional filters only on feature channels, rather
than 2D convolutional filters on the mixed channels of features
and spatial positions. One main reason is, the prior landmark
detection has provided definite matching points, and thus it is
not necessary to confuse the spatial position information by
using convolutional and pooling layers, which is often done in
conventional CNN networks. Considering the size of training
data, we can properly stack a series of layers, including 1D
convolution layer, projection layer, fully connected layer, etc.,
to construct a DNN for FER. As a summary, different from
the previous DNN models such as CNN and DBN, the main
novelties of our proposed network framework are three folds:

1) we use the 2D SIFT feature matrix consisting of salient
low-level features extracted from facial landmark points
as the input data of DNN to imitate the first period of
the neural cognition mechanism on FER. The use of fa-
cial landmark points for feature extraction may alleviate
the misalignment problem, which is very different from
the pooling strategy used in conventional CNN where
the pooling strategy just acts an adverse behavior.

2) we use projection layer to learn discriminative facial fea-
tures across different facial landmark points. In this pro-
cess, the facial features associated with all landmarks are
integrated to produce an ensemble feature set that better
discriminate the different expressions.

3) we employ 1D convolutional layer which is directly per-
formed on feature channels to extract high-level features
instead of 2D filters in conventional CNNs. Compared to
conventional CNNs, an advantage of using both projec-
tion layer and convolutional layer is that it can signifi-
cantly reduce model complexity and hence the proposed
framework are more adaptive to small sample tasks.

The rest of this paper is organized as follows. In Section II,
we propose the DNN-driven facial feature learning method for
expression recognition. In Section III, we use two datasets
to evaluate the propose method for multi-view FER problem.
Section IV concludes our paper.

II. DNN-DRIVEN FACIAL FEATURE LEARNING METHOD

In this section, we will address the DNN-driven facial feature
learning method in details. For this purpose, we firstly address
the method of extracting SIFT features from each facial image.

A. Facial Feature Extraction

To extract the SIFT features, we firstly annotate a fixed num-
ber of key points from each facial image, where the key points
are located around the nose, mouth and eyes. Then, we extract
a set of SIFT feature vectors associated with the key points to
represent the facial image, in which each SIFT feature vector is
a 128-dimensional vector. Basically, the SIFT feature extraction
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procedures include the steps of scale-space extrema detection,
key point localization, orientation assignment and key point
description [28]. We extract SIFT features from certain posi-
tions as used in [8], in which the main orientation of each key
point is set to be a certain value (usually 0) for all key points. In
the key point description step, normalization is handled to make
it invariant to changes in illumination.

B. DNN Framework

The SIFT facial feature vectors extracted from landmark
points of each facial image had been proven to be effective for
the FER problem [8]. For multi-view FER problem, however,
it is notable that the distributions of facial feature vectors may
vary with the changes of facial poses. Consequently, it would be
advantageous to learn a set of ensemble discriminative features
from the raw SIFT facial features associated with various facial
poses in order to improve the multi-view FER performance. To
this end and motivated by the recent development of DNN, in
this section we will propose a novel method of using DNN to
learn the ensemble features for our multi-view FER problem.
Fig. 1 illustrates our DNN-driven feature learning framework,
which consists of six layers, i.e., two projection layers, one 1D
convolution layer, two fully connected layers and a soft-max
layer. Different from conventional CNN or DBN that directly
uses the raw facial images to learn facial features, the proposed
network adopts 2D SIFT descriptor to firstly extract salient low-
level features and then learn higher-level semantic features by
using 1D convolutional operation.

Assume that we have located M landmark points from each
facial image, and for each point we extract a N -dimensional
SIFT feature vector. Then, we can put the M SIFT feature
vectors together to form a M × N feature matrix to represent
each facial image, in which each row of the feature matrix
corresponds to a SIFT feature vector associated with one key
point of this face image. The feature matrices corresponding
to the multiple facial images are finally fed into the DNN as
input data to train this network. In the projection layer of this
deep network, we use multiple left multiplication projection
matrices to integrate the facial features associated with all land-
marks to produce more discriminative features that could bet-
ter discriminate the different expressions. This process could
also be regarded as a spatial filtering of key points via proper
linear combinations of those rows of the input data matrix.
In addition, the right multiplication projection matrices in the
second projection layer are further used to extract more dis-
criminative features among the high-level features for the FER
problem.

Let Ht = {H(l)
t,j |j = 1, . . . , Cl} (t = 1, . . . , Nl) denote the

tth multi-channel projection matrix set consisting of Cl channels
of projection matrices, where H(l)

t,j denote the jth channel matrix
ofHt , Nl denotes the number of multi-channel projection matrix
sets, and Cl denotes the number of channels inHt . Then, the left
multiplication projection layer can be expressed as the following
form:

Ot =
Cl∑

j=1

H(l)
t,j Ij , (t = 1, 2, . . . , Nl) (1)

where Ot denotes the matrix in tth channel of the output and Ij

is the jth channel of the input matrices. If the projection layer
applies right multiplication, i.e.,

Ot =
Cr∑

j=1

IjH
(r)
t,j , (t = 1, 2, . . . , Nr ) (2)

then it projects each row of the input matrix from one feature
space to another, which also results in the dimension reduction
outcome simultaneously.

The convolutional layer uses a group of filters to process
small local parts of the input and is always followed by the
max-pooling layer. Different from most DNN approaches such
as CNN, the filters here are 1D sequences and applied to the
input matrix only along the row direction according to the struc-
ture of feature matrix. These filters may evoke strong responses
when dealing with some parts of the input feature matrix while
the values of the other parts are suppressed, and thus capture
those crucial local structures. As the convolution layer follows
the first projection layer, it is able to extract high-level features
from the ensemble features of the projection layer. In addition,
it is interesting to see that the left multiplication projecting
transform and the right one actually factorize the classic 2D
convolutional matrix in CNN networks, thus the number of con-
nections in the proposed network can be largely reduced and
the over-fitting problem can be alleviated [29]. After the fil-
tering operation, the results are passed through a max-pooling
layer, which yields multiple new feature maps. Assuming V r,l

i,j

represents the value of the unit at position (r, l) of the jth fea-
ture map in the ith layer, then the convolution operation can be
given by

V
(r,l)
(i,j ) =

∑

k∈S

di −1∑

p=0

Wp
i,j,kV r,l+p

i−1,k (3)

where Wp
i,j,k denotes the value of the unit at position p in the jth

channel of the convolution kernels in the ith layer, di represents
the length of the kernels in the ith layer, and S denotes the set
that contains the indexes of the feature maps in the (i − 1)th
layer which are connected with the current feature map.

The max-pooling layer is realized by down-sampling the fil-
tering results of the convolution layer just along the row direc-
tion by taking the maximum filter activation within a specified
window. As a result, it transforms the filtering result to a lower
resolution version, which would make the network be robust to
the minor variations of positions.

The output of the second projection layer (“P4” in Fig. 1),
denoted by Q = [Qc,i,j ]C×I×J , passes through a nonlinear ac-
tivation function before it is set to the first full connection layer
(“F5” in Fig. 1), where C, I , J denote the numbers of the
channels, rows and columns, respectively. This process can be
described as follows:

Fc,i,j = tanh(bc + Qc,i,j ) (4)

where the result of the activation function is denoted as F =
[Fc,i,j ]C×I×J and Fc,i,j denotes the element in the ith row and
jth column of the cth channel, tanh(·) is the hyperbolic tangent
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Fig. 1. Structure of the DNN-driven feature learning framework for FER. This framework consists of two projection layers, two full connected layers, one
convolution layer, one max-pooling layer, and one softmax layer. Detailed descriptions are given in the text.

function and bc is the bias for the matrix of the cth channel. F
has the same size as Q.

The fully connected layer and the softmax layer are used as
the same as those of CNN and DBN. The fully connected layers
combine inputs from all positions, and finally the classification
is done by the softmax layer.

C. DNN Training

To train the proposed DNN, we divide the training data set into
some subsets and the subsets are sequently sent to the network
for training. Then a loss function defined as

L(m,H( l) ,H(r ) ) = − 1
N

N∑

n =1

Y∑

i=1

τ (yn , i) × mn × log Pn ,i

+ λ1

N l∑

t=1

C l∑

j=1

||H( l)
t ,j ||1 + λ2

N r∑

q=1

C r∑

k=1

||H(r )
q ,k ||1

(5)

is calculated to evaluate the difference between the predicted
results and the labels, where

τ(yn , i) =

{
1, if yn = i

0, otherwise

where N denotes the number of the training samples, Y is
the number of expression types, yn is the label of nth training
sample, λ1 , λ2 are the weights of the two l1 norm regularization
terms, m = [mn ]N ×1 is a vector consisting of different weights
for the training samples where mn means the value of the weight
for the nth training sample, and Pn,i represents the value of the
prediction that the nth training sample is predicted to be the
ith class.

The parameters of each layer are updated according to the
value of the loss function through backpropagation algorithm.
In the loss function, the first term calculates the mean nega-
tive logarithm value of the prediction probability of the training
samples. The second and third terms ensure the sparse struc-
ture of the matrices in the two projection layers. These sparse
matrices in projection layer are able to learn discriminative fa-
cial features across different facial landmark points, where the
elements of the projection matrix consist of different weights
indicating the importance of the corresponding landmark points
to learn the discriminative features. The parameters λ1 , λ2 are

constant which means that the values of them may not change
for all the training samples once they are set. However, the
values of elements in m are not always the same for all the
training samples. The elements of m determine the weights of
the gradients during the process that the parameters of the net-
work are tuned. They are set according to the orientation angles
during extracting SIFT descriptors, which is illustrated in de-
tail in Section III. If some values of elements in m are set to
be larger for a certain part of the training samples, the adjust-
ment of the parameters in the network will be more affected by
these samples.

III. EXPERIMENTS

In this section, we conduct experiments on both Multi-PIE
[31] and BU-3DFE [32] facial expression databases to evalu-
ate the proposed multi-view FER method. The Multi-PIE facial
expression database contains six facial expressions which are
disgust, neutral, scream, smile, squint and surprise. These facial
expressions are performed by 337 subjects under 15 view points
and 19 illumination conditions. The 337 subjects consist of 235
males and 102 females from different areas in the world. The
BU-3DFE database contains 100 people of different ethnicities,
including 56 females and 44 males. Six universal facial expres-
sions (anger, disgust, fear, happiness, sadness and surprise) are
elicited by various manners, and each of them includes 4 levels
of intensities which yields 2400 facial expression models. These
models are described by both 3D geometrical shapes and color
textures with 83 feature points (FPs) identified on each model.
Some image samples of Multi-PIE and BU-3DFE datasets are
shown in Fig. 2.

For Multi-PIE database, we use the same data set as [9], i.e.,
images of 100 subjects are selected from all the subjects, which
contain all the six facial expressions under seven views (0◦, 15◦,
30◦, 45◦, 60◦, 75◦ and 90◦) of one certain illumination condition.
Each facial image is annotated with 68 key points. Thus, 4200
facial images are chosen from Multi-PIE database. For BU-
3DFE dataset, we project the models of 100 people to facial
images of 0◦, 30◦, 45◦, 60◦ and 90◦ yaw angles. At the same
time, the 83 FPs are also projected onto the corresponding 2D
faces. Thus we get 12 000 facial images under five angles with 83
annotated points on each image. These images are transformed
into gray color space and 83 SIFT descriptors are extracted on
the annotated points of each face.
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Fig. 2. Facial images in Multi-PIE and BU-3DFE datasets of different ex-
pressions. Images in the first row are from Multi-PIE and the second are from
BU-3DFE. Images from the left column to the right column are under views 0◦,
30◦, 60◦, and 90◦, respectively.

A. Experiments on Multi-PIE

For our algorithm, the parameters of DNN are set as what fol-
lows. In the input layer, the feature matrices are in size 68 × 128
of one channel as we extract SIFT descriptors in gray scale and
the dimension of each SIFT descriptor is 128. The projection
matrices in left projection layer are in size 5 × 1 × 30 × 68
which means that there are five 1-channel matrices in the left
projection layer and each matrix of one channel contains 30
rows and 68 columns. The filters in convolution layer have the
size 5 × 5 × 1 × 3 where the number of channel is set corre-
sponding to the number of the 1-channel matrices in the left
projection layer. The projection matrices in the right projection
layer are in size 5 × 5 × 63 × 30. The first fully connected layer
combines the input matrix of this layer into a long vector, and
the transformation matrix in this layer has the size 4500 × 400
which transforms the dimension of the feature from 4500 to
400. The size of the transformation matrix in the second fully
connected layer is 400 × 6, in which 6 is set according to the
number of the emotion types.

The experiment is carried out with a cross-validation strat-
egy. As we have 4200 images of 100 people, we randomly divide
them into a training set of 80 subjects and a testing set of 20 sub-
jects and there’s no overlap between the subjects of the two sets.
Thus we get 3360 facial images in the training set and 840 facial
images in the testing set. As the number of the images in training
set is not so large in this experiment, we extract SIFT descrip-
tors not only on the original images, but also on the transformed
images as it is illustrated in Section II-C. For the given training
set, we firstly extract SIFT descriptors on the original images,
then we perform mirror transformation to these images and also
extract SIFT descriptors on them. After this, the original facial
images are rotated ten degrees clockwise and counterclockwise
respectively so that we can get another two sets of SIFT de-
scriptors. Thus totally 13 440 training samples are created. This
process is shown in detail in Fig. 3. For the testing data, the
SIFT descriptors are extracted only on the original testing im-
ages. As it is illustrated in Section II-C, we want the adjustment
of the parameters to be mainly affected by the SIFT descriptors
extracted on the original training images, so we set some of the
weights in m of (5) to be 2.5 for this part of descriptors and 1

Fig. 3. Image rotation and mirror transformation in SIFT extraction process.
The first column contains original images. The images in the second column
are under mirror transformation. The images in the third and fourth columns are
rotated ten degrees clockwise and counterclockwise respectively.

for others. The values of λ1 , λ2 are both set to be 0.0000135
according to the experimental results.

Table I compares the average recognition accuracy of our
neural network with the results achieved by various algorithm
on Multi-PIE, including deep learning methods and algorithms
based on hand-crafted features. For deep learning methods, we
compare the results with the networks including DBN, CNN and
the joint fine-tuning DNN (JFDNN) proposed in [18]. To set the
parameters of these algorithms as optimal as possible, we con-
duct experiments for CNN, DBN and JFDNN by traversing in
a large range of the numbers of nodes in each layer. Concretely,
for convolutional layers in CNN and JFDNN, the range of con-
volution kernels number in each convolutional layer is [10, 35].
We build these networks with theano [33], [34], which is a pub-
lic and popular tool that stochastic gradient descent can be done
automatically. And in all our experiments no additional samples
from other datasets are used. The DBN used in our experiment
contains two hidden layers which contain 1200 and 200 nodes
respectively. The input of the DBN is an 8704 dimensional vec-
tor assembled by the SIFT descriptors of the 68 key points in
each facial image. The accuracy of DBN is 76.1%. The CNN in
our experiment contains three convolution layers followed by
three max-pooling layers respectively and two fully connected
layers. The filters are in size 23 × 1 × 5 × 5 in the first convo-
lution layer, 15 × 23 × 3 × 3 in the second convolution layer
and 23 × 15 × 3 × 3 in the third convolution layer respectively.
As CNN employs image as input directly, images which con-
tain only facial areas are cropped from the original images of
Multi-PIE dataset and normalized to the size 64 × 64. After
hundreds rounds’ training, the highest accuracy it achieves is
77.8%. For JFDNN, as video sequences are considered as its in-
puts, it cannot directly be applied to FER based on static images.
For this reason, we transform their framework into a 2D based
one. We build a 2D JFDNN consisting of a 2D CNN of three
convolution layers and a deep geometry network of two hidden
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TABLE I
COMPARISON OF THE AVERAGE RECOGNITION ACCURACIES AMONG THE STATE-OF-THE-ART AND OUR NETWORK ON MULTI-PIE DATABASE

Methods Subjects Expression number Pose number Features Overall(% )

DBN (2 hidden layers) 100 (80 train, 20 test) 6 7 SIFT (3360 training samples) 76.1
CNN (3 convolution layers) 100 (80 train, 20 test) 6 7 augmented images (13440 training images) 77.8
2D JFDNN [18] 100 (80 train, 20 test) 6 7 augmented images and geometry features of landmarks (13440

training images)
82.9

Moore and Bowden [6] 100 (80 train, 20 test) 6 7 LBP m s 73.3
Moore and Bowden [6] 100 (80 train, 20 test) 6 7 LGBP 80.4
Zheng GSRRR [9] 100 (80 train, 20 test) 6 7 SIFT 79.3
Zheng GSRRR [9] 100 (80 train, 20 test) 6 7 LBP u 2 81.7
Our Method 100 (80 train, 20 test) 6 7 SIFT (3360 training samples) 82.0
Our Method 100 (80 train, 20 test) 6 7 SIFT (13440 training samples) 85.2

TABLE II
RESULTS OF AVERAGE RECOGNITION ACCURACIES OF EACH EXPRESSION

VERSUS THE DIFFERENT FACIAL VIEWS ON THE MULTI-PIE DATABASE

Features Results(% )

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Average

2D JFDNN [18] 85.1 83.3 85.8 84.2 80.8 80.8 80.0 82.9
Our Method (13 440 samples) 88.2 88.0 87.3 85.3 83.8 83.3 78.8 85.2

layers, where the filters in three convolution layers are with size
15 × 1 × 5 × 5, 17 × 15 × 3 × 3 and 23 × 17 × 3 × 3 and the
numbers of hidden nodes are both set to be 50. The input of
the 2D CNN are static images and the input of the deep geom-
etry network are concatenated coordinates of landmark points
of each face. After jointly fine-tuning the two networks, we get
accuracy of 82.9%. Besides the deep learning methods, our re-
sult is compared with the previous works based on hand-drafted
descriptors. Multiple kinds of descriptors are employed in [6]
to fulfill the FER task, and the best result of them is 80.4% by
using the LGBP descriptor. The accuracies of the method in [9]
are 79.3% by using SIFT descriptors and 81.7% with LBPu2 .
For our method, if the features are not augmented by perform-
ing mirror transformation and rotation to the images, the result
is 82.0% which is competitive to the result of [9]. However,
if we use the augmented 13440 samples, the accuracy of our
network can achieve the accuracy of 85.2%, which is the high-
est among these methods. The comparison between the results
of our method by using the original 3360 training samples and
the augmented 13440 samples demonstrates the effectiveness of
adding features extracted from transformed images.

Table II shows the accuracies of the comparison between 2D
JFDNN transformed from [18] and our neural network corre-
sponding to the seven yaw head poses (0◦, 15◦, 30◦, 45◦, 60◦,
75◦ and 90◦). From this table we can see that the result of each
view in our method is higher than 2D JFDNN except the result
under 90◦, which is 1.2% lower. High accuracies are achieved
in 0◦, 15◦ and 30◦ which are 88.2%, 88.0% and 87.3% sepa-
rately, and the view corresponds to the lowest accuracy is 90◦.
The highest accuracy of 2D JFDNN appears under the view 30◦

while the highest accuracy of our algorithm appears under the
view 0◦.

Fig. 4 shows the confusion matrices of the different expres-
sion recognition results under different views and the result of

overall expression recognition. As it is shown, the two expres-
sions of scream and surprise are much easier to be recognized
than others, which is most likely due to their relatively large
muscle deformations. And for these two kinds of expressions,
all the accuracies of the seven yaw head poses are higher than
90%. Followed are the recognition results of disgust, neutral
and smile, which are more than 80%. The lowest accuracy is
72% of the expression squint. It should be noticed that the main
error classification comes from the confusion between disgust
and squint. There are 17 percent of disgust samples misclassi-
fied to be squint and 19 percent of squint samples misclassified
to be disgust. The high confusion may be caused by the fact
that the expressions of disgust and squint have similar muscle
deformations around eyes, which is pointed out by Moore and
Bowden in [6].

B. Experiments on BU3D-FE

In this experiment, the parameters of the neural network are
set almost the same as those on Multi-PIE. The main difference
locates in the input layer and the first projection layer because
83 key points are annotated in each facial image in BU3D-FE
instead of 68 points. So in the input layer, the feature matrix con-
tains 83 rows and 128 columns of one channel. The projection
matrices in the left projection layer are in size 5 × 1 × 30 × 83.
The convolution layer contains five 1 × 3 filters of 5 channels.
In the right projection layer, the projection matrices are in size
5 × 5 × 63 × 30. The sizes of the transformation matrices in the
first and the second fully connected layer are 4500 × 400 and
400 × 6 respectively.

The experiment is also carried out with a cross-validation
strategy, which is similar to the aforementioned section. This
time we have 12 000 images of 100 people, and we still randomly
divide them into a training set of 80 subjects and a testing
set of 20 subjects without overlapping between the subjects of
the two sets. Thus we get 9600 facial images in the training
set and 2400 facial images in the testing set. As the training
set is much larger than Multi-PIE this time, we only employ
the original training samples without any augmentation (e.g.,
rotation, mirror transformation, etc.). This also means that in
this experiment the weights of the gradients in (5) are set to be
1 for all the training samples. The values of λ1 , λ2 are still both
set to be 0.0000135 according to the experimental results.

The average recognition accuracy of our neural network is
compared with the results achieved by DBN, CNN, 2D JFDNN,
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Fig. 4. Experimental results of confusion matrices on the Multi-PIE database. (a)-(g) The confusion matrices corresponding to seven facial views.
(h) The overall recognition rates with respect to different facial expressions.

TABLE III
COMPARISON OF THE AVERAGE RECOGNITION ACCURACIES AMONG THE STATE-OF-THE-ART AND OUR NETWORK ON BU3D-FE DATABASE

Methods Expression number Pose number Features Overall(% )

DBN (2 hidden layers) 6 (4 levels of intensities) 5 SIFT 73.5
CNN (3 convolution layers) 6 (4 levels of intensities) 5 original images 68.9
2D JFDNN [18] 6 (4 levels of intensities) 5 original images and geometry features of landmarks 72.5
Moore and Bowden [6] 6 (4 levels of intensities) 5 LGBP /LBP m s 71.1
Rudovic, Patras, and Pantic [7] 7 (2 levels of intensities) 35 train, 247 test 39 landmarks 76.5
Zheng et al. [8] 6 (4 levels of intensities) 5 sparse SIFT 78.4
Zheng GSRRR [9] 6 (4 levels of intensities) 5 sparse SIFT 78.9
Our Method 6 (4 levels of intensities) 5 SIFT 80.1

[6]–[8] and [9] in Table III. As the experimental settings of [7]
is different from others, we mainly focus on the methods in
DBN, CNN, 2D JFDNN, [6], [8] and [9]. The DBN used
in this experiment contains two hidden layers which contain
4000 and 400 nodes respectively. The input of the DBN is
a 10 624 dimensional vector assembled by the 128 dimen-
sional SIFT descriptors of the 83 key points in each facial
image. The accuracy of DBN is 73.5%. The CNN in our ex-
periment contains three convolution layers followed by three
max-pooling layers respectively and two fully connected lay-
ers. The filters are in size 24 × 1 × 5 × 5 in the first convo-
lution layer, 28 × 24 × 3 × 3 in the second convolution layer
and 31 × 28 × 3 × 3 in the third convolution layer respectively.
The input images are also normalized to the size 64 × 64 which
is the same as the experiment on Multi-PIE. As it is shown in
Table III, the accuracy of the CNN on BU3D-FE dataset is
68.9%. 2D JFDNN achieves 72.5% which contains three convo-
lution layers and two hidden layers, where the filters in the three
convolution layers are in size 16 × 1 × 5 × 5, 24 × 16 × 3 × 3
and 28 × 24 × 3 × 3 and the numbers of the hidden nodes
are set to be 50. The accuracy of the method in [6] using
LGBP /LBPms is 71.1% and higher accuracies are achieved

TABLE IV
RESULTS OF AVERAGE RECOGNITION ACCURACIES OF EACH EXPRESSION

VERSUS THE DIFFERENT FACIAL VIEWS ON THE BU3D-FE DATABASE

Features Results(% )

0◦ 30◦ 45◦ 60◦ 90◦ Average

Zheng GSRRR (sparse SIFT) [9] 78.9 80.1 80.1 78.4 77.0 78.9
Our Method 79.7 80.7 81.0 80.5 79.5 80.1

with SIFT using algorithms proposed in [8] and [9], which are
78.4% and 78.9% separately. Our method achieves 80.1% which
is competitive to the methods above.

Table IV shows the accuracy of each view of our method.
As the GSRRR method proposed in [9] achieves high accuracy,
our result is also compared with the results of GSRRR under all
five views. From this table we can see that the accuracies under
all the views of our method are higher than those of GSRRR.
The highest accuracies of the two methods are both achieved
under the view 45◦, which are 81.0% of our method and 80.1%
of GSRRR. And the lowest accuracies appear both under the
view 90◦.
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Fig. 5. Experimental results of confusion matrices on the BU3D-FE database. (a)-(e) The confusion matrices corresponding to five facial views.
(f) The overall recognition rates with respect to different facial expressions.

Fig. 5 shows the confusion matrices under different views on
BU3D-FE dataset. As it is shown, the highest accuracy is 91% of
surprise which is consistent with the result in Fig. 4 because of
large muscle deformations. Followed are the recognition results
of happy and sad, which are more than 80%. The lowest accu-
racy is 66% of fear. Relatively high confusions appear between
two pairs of expressions, which are angry versus sad and fear
versus happy.

IV. CONCLUSION

In this paper, a DNN-driven feature learning method is pro-
posed to deal with the multi-view FER problem by borrow-
ing the visual mechanism of FER. The SIFT descriptors are
firstly extracted from those accurate detected landmarks to im-
itate the salient low-level visual feature detection of the first
period in the neural cognition system. In sequent, two novel
layers including the projection layer and convolutional layer
are designed based on the structure of the low-level input
feature to adaptively learn spatial discriminative information
as well as extract more robust high-level features, which is
very different from those conventional CNNs and DBNs. As a
factorization on 2D convolutional matrix, the two layers can
largely reduce the space complexity of parameters and fur-
ther alleviate the overfitting phenomenon especially on those
small dataset. The extensive experiments on two different fa-
cial expression databases demonstrate that our proposed frame-
work is more competitive over state-of-the-arts under the same
experimental environments.
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